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Quantile

Response Y, predictors X. Conditional quantile curve Q(+;7) of

Y € R conditional on X is defined through

Examples:

PY<QX;7)|[X=2)=1 Vz.

Y =0.5*X + N(0,1)

Y = X+ (5+X)*N(0,1)

ERRE

Y|X=x ~ Beta(1.5-x,.5+x)




Quantile

Quantile regression vs mean regression

Mean regression:
Y, =m(X;) +e,Ee|X =2] =0
e m: Regression function, object of
interest.

@ g;: errors’.

Quantile regression:
PY <Q(z;n)|X=2)=171 :
o No strict distinction between ’signal’
and 'noise’.

@ Object of interest: properties of &
conditional distribution of Y| X = x. %

e Contains much richer information
than just conditional mean.
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Quantile

Quantile Regression: Estimation

Koenker and Bassett (1978): if Q(z;7) = B(7) "z, estimate by
3(r) := arg mi (Y — b X; 1.
B(7) := arg mgnzip (Y;i—b' X;) (1.1)

where p;(u) := 7ut + (1 — 7)u™ ’check function’. Well-behaved

convex optimization.

~

Q(xo;7) := ajgﬁ(r) for any .



Quantile Reg

Quantile Regression Process

The quantile regression process (QRP) at g is

an(Q(zo; 7) — Q(z0;7)) € £°(T), (1.2)

where a,, — oo appropriately chosen, 7 C (0, 1) is compact
For fixed xg, and 77,7y 7close” to 0 and 1,

TU
Q' (z0;y) = Flylzo) ~ 71 +/ {Q(zo; 7) < yhdr =: ©y(Q(z0; 7))
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Quantile

Convergence of QRP

If for a,, — oo,

~

an(Q(zo; ) — Q(x0; ) ~ G(-) in £(T), (1.3)

where G(-): Gaussian process, £°°(7): set of all uniformly bounded,
real functions on 7T, then,

an{ﬁy\x('|$o) — Fyx(-|zo) } ~
— fyix (120)G (x0; Fy x (-|z0)) in £°(Y).  (1.4)

Proof: ®,(Q(x;7)) is Hadamard differentiable (Chernozhukov
et al., 2010) (tangentially to C(0,1) at any strictly increasing,
differentiable function); functional delta method



Quantile Regression

Study (1.3):

e Fixed dimension linear model Q(z;7) = = ' B(7): Koenker
and Xiao (2002); Angrist et al. (2006)

e Kernel nonparametric estimation: Qu and Yoon (2015)

A Unified framework (Belloni et al., 2011):
Q(z;7) = Z(z) ' B(7)
Z(X;) can be a higher dimensional (— oco) transformation
o Qz;7) = Z(a:)TB(T), where B(T) is estimated by replacing

o Need to control the bias Q(z;7) — Z(x) " B(7)



Quantile

Overview

We present process convergence results
an(Q(20; ) — Q05 ) ~ G(-) in £°(T)

for the models:
o General series estimator
e B-splines: Z(x) = B(x)

e An application: partial linear models
7 — (VT, Z(W)T)T c Rk+k/

Notation:

o Z;, := Z(X;) general basis function (e.g. trigonometric,
power, etc.);

e B, := B(Xj;) local basis (e.g. B-spline)



Technical Assumptions

Assumption (A): data (Xj,Y;)i=1,.. n form triangular array and
are row-wise i.i.d. with

(A1) m = Z(x). Assume that [|Z;]| < &, < oo, and there exits
some fixed constant M so that

1/M < Apin (E[ZZ7]) < Amax(E[ZZ7]) < M

(A2) The conditional distribution Fy|x(y|z) is twice
differentiable w.r.t. y. Denote the corresponding
derivatives by fyx(y|r) and f{,‘X(y|a:). Assume that

[ = sup |fY\X(?/|51?)\ <oo, fl:=sup ’fs// x(ylr)] < o0
\
Y,z

Yy,

uniformly in n.

(A3) 0 < fumin < inf e7inf, fy‘X<Q(l'; 7)|2) uniformly in n.



General Series Model

A Bahadur Representation

Under Assumption (A), mé&2, logn = o(n). For any B, (+)

satisfying
90(Bn) := sup [E[Zi{ Fy 1 (2] Bu(r)1X) = ] || = o(&")
a(Bn) 1= sup Q@i ™) = B(@) Bu(r)| = o(1)

we have

R 1 n
B(r)—Bn(1) = = =Jm(r)"" D Z;(1{Y; < Z/ b} — 7) +Remainder,
n
=1

(%)

where Jn(7) := E[fyx (Q(X3 7)) Z(X)Z(X) ].



General Series Model

Assumption ($): meylogn = o(1), m3¢2, (logn)3

o(n), gn =
o(n=/2) and for any |lu =1,

sup uTJm(T)_lE{Zi(l{Yi < Q(Xi;m)} - 1{Y; < zj@,,(ﬂ})” — o(n~1/2).

Under Assumption (), we can replace (%) by

Un(r) =0~ () 3D 2i(1{Yi £ QX )} = 7).
i=1



General Series Model

T JoNT)Zi (1Y < Q(Xis 7)) — 7):
o A triangular array

@ Not Lipschitz in 7

Asymptotic Equicontinuity of Quantile Process:

Under Assumption (A) and &2, (logn)? = o(n), we have for any
e > 0 and vector u,, € R™ with ||u,|| =1,

hmhmsupP( 12 sup  |u U, (1) —u U, (7 )‘>5):0.

0—=0 n—oo |1 —7m2]|<8

T1,72€T

Proof: Stochastic Equicontinuity + Chaining (Kley et al., 2015;
van der Vaart and Wellner, 1996)



General Series Model

Weak Convergence: General Series Estimator

Under Assumption (A) and (<$»). For a sequence u,, if

H(7y,7m2;uy)
= lim |Ju,|| 2w, J, (1)E[ZZ )T,  (72)un (11 A T2 — Ti72)

n—00

exists for any 71,79 € T, then

NG
[[un |

where G(-) is a centered Gaussian process with the covariance func-
tion H. In particular, there exists a version of G with almost surely
continuous sample paths.

(wrB() —urBa(r)) ~ G() in £(T),  (2)

Proof: Asymptotic equicontinuity, and verifying the Lindeberg
condition.



Local Basis Model

Splines

B-Splines B = (b1 (z), b2(x), ..., by (z)) are local basis functions

Basis functions
0.8 : - - -
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Notation: For Z € {1,....,m} and a € R, a®) = (af)f, € R™
where a; = 0 for j ¢ Z



Local Basis Model

Benefit from Using Splines

Jm(7) is a block matrix, where
In(7) = Elfy|x (Q(X; 7))B(X)B(X) ],

entries in .J-!(7) decay geometrically from the main diagonal
(Demko et al., 1984)

(a) Jm(7),dim(X) =1 (b) Jnt (), dim(X) =1




Local Basis Model

If a has at most ||a|lp nonzero consecutive entries, we can find set
Z(a) C {1,...,m} with |Z(a)| < logn such that

laT gt (7) = (@T T () F@) S lallclaflon

where ¢ > 0 is arbitrary

If u,, is nonzero at the position in an index set Z, which consists
of L < oo consecutive entries

Z ul J OB (1 < B B, (1) T )} —r)

where 7'(u,,) = {1 < j <m: 3 € Z(u,) such that |[j —i| < r}

A reduction from dimension m to logn!



Local Basis Model

Define

Yn(7) 1= aﬁg}ggnE[(BTb — Q(X37) fyx (Q(X; T X)],

Assumption ('): &2 = o(n~/?), €4 (logn)® = o(n), where

En(771,) ‘= Sup ‘Q(zﬂ—) - Z(I)Tﬁn(T”
z,TET

Compare to Assumption ({):
o &m = O(m!/?): €2 (logn)® = o(n) is much weaker than
m3¢&2 (logn)? = o(n) in Assumption ({)
e If Q(x;7) is smooth in z for all 7, then &, = o(n2/%) when
reR



Local Basis Model

Weak Convergence: Spline Series Estimator

Under Assumption (A) and ({)’). For a sequence u,,, if

H(Tla 723 un)

= le Hun||*QuZJ,jll(Tl)E[BBT}J;LI(Tg)un(Tl ATy — TiT2)

exists for any 71,79 € T, then

n ~ .

Y (aTBC) — ula()) = GO m (T, (3)
n

where G(-) is a centered Gaussian process with the covariance func-

tion H. In particular, there exists a version of G with almost surely

continuous sample paths.



Local Basis Model

Tensor-Product Spline

Conjecture(Demko et al., 1984, Sec.5): the elements of J1(7)
from the tensor-product spline B are also decreasing
geometrically away from the main diagonal

(¢) Jm(7),dim(X) =2




Local Basis

Application: Partial Linear Model

Partial Linear Model:
QX;71)= VTCX(T) + h(W;T), (3.2)

where X = (VT, W )T € R¥* and k, k' € N are fixed.

Expanding w — h(w;7) in terms of basis vectors w — Z(w), we
can approximate (3.2):

Q(x;7) = Z(x) " Bn(7)
where Z(z) = (vT, Z(w)")T and B, = (a(r) 7, BL(1)T)T

gives a(1) and ﬁ(w; T) = Z(w)T,@IL(T)



Local Basis Model

Assumption (B):
(B1) Define ¢}, := SUp, 4, |Z(w) T B} (7) — h(w; 7)| and assume that

fmc;fz = 0(1)§
sup E[fyx (Q(X: 1)l X)llhvw (W) - A(ZW))|IP] = O(A2)

with £nA2 = o(1)

(B2) We have max;<y, |V;| < C almost surely for some constant
C>0.

(B3)

+ ¢f2¢,, = 0(n71/2).
n

< 52/3 logn>3/4

Moreover assume that ch A\, = o(n"1/2) and
mel logn = o(1).



Local Basis Model

Joint Process Convergence

Under Assumption (A) and (B), suppose at wy,

Lo2(71,72)
= lim || Z(wo)[|"*Z(wo) " Ma(1) "E[Z(W)Z(W) | Ma(72) ™ Z(wo)

exists, then

a0 ) !
n ~ Gl'a"':G?'abe;' )
n (5°°(7'))k+1 where (G1(:), ..., Gy(-), Gn(wo; -)) are centered

Gaussian processes with joint covariance function

Iii(71,72) 0y, >
0, Lo (71, 72)

In particular, there exists a version of Gy, (wp; ) with almost
surely continuous sample paths.



Local Basis Model

Remarks

e Most asymptotic results for partial linear model separately
study the parametric and nonparametric part

e Joint asymptotics phenomenon for mean partial linear
model: Cheng and Shang (2015)

@ We show such joint asymptotics holds in process sense for
quantile model



Thank you for your attention
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Detail for PLM

Ms(T) = E[Z(W)Z(W)wax(Q(X;7')|X)]

[11(71,72)
= Myp(r) "E[(V = hyw (W5 m))(V = hyw (W3 72)) T | My (2) ™

where M (1) =
E[(V — hvw (W5 7))(V = hyw (W35 7) T fyx (Q(X;7)|X)]
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