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Quantile

Response Y , predictors X. Conditional quantile curve Q(·; τ) of
Y ∈ R conditional on X is defined through

P (Y ≤ Q(X; τ)|X = x) = τ ∀x.

Examples:
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Y = 0.5*X + N(0,1) 
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Quantile regression vs mean regression

Mean regression:
Yi = m(Xi) + εi,E[ε|X = x] = 0

m: Regression function, object of
interest.

εi: ’errors’.

Quantile regression:
P (Y ≤ Q(x; τ)|X = x) = τ

No strict distinction between ’signal’
and ’noise’.

Object of interest: properties of
conditional distribution of Y |X = x.

Contains much richer information
than just conditional mean.
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Quantile Regression: Estimation

Koenker and Bassett (1978): if Q(x; τ) = β(τ)>x, estimate by

β̂(τ) := arg min
b

∑
i

ρτ (Yi − b>Xi) (1.1)

where ρτ (u) := τu+ + (1 − τ)u− ’check function’. Well-behaved
convex optimization.

Q̂(x0; τ) := x>0 β̂(τ) for any x0.
Series Model

Partial Linear Model
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Quantile Regression Process

The quantile regression process (QRP) at x0 is

an(Q̂(x0; τ)−Q(x0; τ)) ∈ `∞(T ), (1.2)

where an →∞ appropriately chosen, T ⊂ (0, 1) is compact

For fixed x0, and τL, τU ”close” to 0 and 1,

Q−1(x0; y) = F (y|x0) ≈ τL +

∫ τU

τL

1{Q(x0; τ) < y}dτ =: Φy(Q(x0; τ))

0.0 0.2 0.4 0.6 0.8 1.0
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00
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B
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D

Q̂( Age x0 = 13 ; τ)
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Q̂( Age x0 = 23 ; τ)

0.00 0.05 0.10
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C
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F

F̂(y | Age x0 = 13)
F̂(y | Age x0 = 18)
F̂(y | Age x0 = 23)



Quantile Regression General Series Model Local Basis Model References

Convergence of QRP

If for an →∞,

an(Q̂(x0; ·)−Q(x0; ·)) G(·) in `∞(T ), (1.3)

where G(·): Gaussian process, `∞(T ): set of all uniformly bounded,
real functions on T , then,

an
{
F̂Y |X(·|x0)− FY |X(·|x0)

}
 

− fY |X(·|x0)G
(
x0;FY |X(·|x0)

)
in `∞(Y). (1.4)

Proof: Φy(Q(x; τ)) is Hadamard differentiable (Chernozhukov
et al., 2010) (tangentially to C(0, 1) at any strictly increasing,
differentiable function); functional delta method
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Study (1.3):

Fixed dimension linear model Q(x; τ) = x>β(τ): Koenker
and Xiao (2002); Angrist et al. (2006)

Kernel nonparametric estimation: Qu and Yoon (2015)

A Unified framework (Belloni et al., 2011):

Q(x; τ) ≈ Z(x)>β(τ)

Z(Xi) can be a higher dimensional (→∞) transformation

Q̂(x; τ) = Z(x)>β̂(τ), where β̂(τ) is estimated by replacing
Xi by Z(Xi) in Quantile Regression

Need to control the bias Q(x; τ)− Z(x)>β(τ)
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Overview

We present process convergence results

an(Q̂(x0; ·)−Q(x0; ·)) G(·) in `∞(T )

for the models:

General series estimator

B-splines: Z(x) = B(x)

An application: partial linear models
Z = (V >, Z̃(W )>)> ∈ Rk+k′

Notation:

Zi := Z(Xi) general basis function (e.g. trigonometric,
power, etc.);

Bi := B(Xi) local basis (e.g. B-spline)
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Technical Assumptions

Assumption (A): data (Xi, Yi)i=1,...,N form triangular array and
are row-wise i.i.d. with

(A1) m = Z(x). Assume that ‖Zi‖ ≤ ξm <∞, and there exits
some fixed constant M so that

1/M ≤ λmin(E[ZZT ]) ≤ λmax(E[ZZT ]) ≤M

(A2) The conditional distribution FY |X(y|x) is twice
differentiable w.r.t. y. Denote the corresponding
derivatives by fY |X(y|x) and f ′Y |X(y|x). Assume that

f̄ := sup
y,x
|fY |X(y|x)| <∞, f ′ := sup

y,x
|f ′Y |X(y|x)| <∞

uniformly in n.

(A3) 0 < fmin ≤ infτ∈T infx fY |X(Q(x; τ)|x) uniformly in n.
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A Bahadur Representation

Under Assumption (A), mξ2m log n = o(n). For any βn(·)
satisfying

gn(βn) := sup
τ∈T

∥∥E[Zi{FY |X(Z>i βn(τ)|X)− τ
}]∥∥ = o(ξ−1m )

cn(βn) := sup
x,τ∈T

|Q(x; τ)− Z(x)>βn(τ)| = o(1)

we have

β̂(τ)−βn(τ) = − 1

n
Jm(τ)−1

n∑
i=1

Zi(1{Yi ≤ Z>i b} − τ)︸ ︷︷ ︸
(F)

+Remainder,

where Jm(τ) := E[fY |X(Q(X; τ))Z(X)Z(X)>].
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Assumption (♦): mcn log n = o(1), m3ξ2m(log n)3 = o(n), gn =

o(n−1/2) and for any ‖u‖ = 1,

sup
τ∈T

∣∣∣u>Jm(τ)−1E
[
Zi
(
1{Yi ≤ Q(Xi; τ)} − 1{Yi ≤ Z>i βn(τ)}

)]∣∣∣ = o(n−1/2).

Under Assumption (♦), we can replace (F) by

Un(τ) := n−1J−1m (τ)
n∑
i=1

Zi
(
1{Yi ≤ Q(Xi; τ)} − τ

)
.
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τ 7→ J−1m (τ)Zi
(
1{Yi ≤ Q(Xi; τ)} − τ

)
:

A triangular array

Not Lipschitz in τ

Asymptotic Equicontinuity of Quantile Process:

Under Assumption (A) and ξ2m(log n)2 = o(n), we have for any
ε > 0 and vector un ∈ Rm with ‖un‖ = 1,

lim
δ→0

lim sup
n→∞

P
(
n1/2 sup

|τ1−τ2|≤δ
τ1,τ2∈T

∣∣∣u>nUn(τ1)− u>nUn(τ2)
∣∣∣ > ε

)
= 0.

Proof: Stochastic Equicontinuity + Chaining (Kley et al., 2015;
van der Vaart and Wellner, 1996)
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Weak Convergence: General Series Estimator

Under Assumption (A) and (♦). For a sequence un, if

H(τ1, τ2; un)

:= lim
n→∞

‖un‖−2u>n J−1m (τ1)E[ZZ>]J−1m (τ2)un(τ1 ∧ τ2 − τ1τ2)

exists for any τ1, τ2 ∈ T , then

√
n

‖un‖

(
u>n β̂(·)− u>nβn(τ)

)
 G(·) in `∞(T ), (2.1)

where G(·) is a centered Gaussian process with the covariance func-
tion H. In particular, there exists a version of G with almost surely
continuous sample paths.

Proof: Asymptotic equicontinuity, and verifying the Lindeberg
condition.
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Splines

B-Splines B = (b1(x), b2(x), ..., bm(x)) are local basis functions

Notation: For I ∈ {1, ...,m} and a ∈ Rm, a(I) = (a′j)
m
j=1 ∈ Rm

where a′j = 0 for j 6∈ I
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Benefit from Using Splines

Jm(τ) is a block matrix, where

Jm(τ) = E[fY |X(Q(X; τ))B(X)B(X)>],

entries in J−1m (τ) decay geometrically from the main diagonal
(Demko et al., 1984)

(a) Jm(τ),dim(X) = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(b) J−1
m (τ), dim(X) = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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If a has at most ‖a‖0 nonzero consecutive entries, we can find set
I(a) ⊂ {1, ...,m} with |I(a)| � log n such that

‖a>J−1m (τ)− (a>J−1m (τ))(I(a))‖ . ‖a‖∞‖a‖0n−c

where c > 0 is arbitrary

If un is nonzero at the position in an index set I, which consists
of L <∞ consecutive entries

u>nUn(τ) ≈ 1

n

n∑
i=1

u>n J
−1
m (τ)B

(I(un))
i (1{Yi ≤ B>i βn(τ)(I

′(un))}−τ)

where I ′(un) = {1 ≤ j ≤ m : ∃i ∈ I(un) such that |j − i| ≤ r}

A reduction from dimension m to log n!
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Define

γn(τ) := argmin
b∈Rm

E
[
(B>b−Q(X; τ))2fY |X(Q(X; τ)|X)

]
,

Assumption (♦′): c̃2n = o(n−1/2), ξ4m(log n)6 = o(n), where

c̃n(γn) := sup
x,τ∈T

|Q(x; τ)− Z(x)>βn(τ)|

Compare to Assumption (♦):

ξm = O(m1/2): ξ4m(log n)6 = o(n) is much weaker than
m3ξ2m(log n)3 = o(n) in Assumption (♦)

If Q(x; τ) is smooth in x for all τ , then c̃n = o(n−2/5) when
x ∈ R
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Weak Convergence: Spline Series Estimator

Under Assumption (A) and (♦′). For a sequence un, if

H̃(τ1, τ2; un)

:= lim
n→∞

‖un‖−2u>n J−1m (τ1)E[BB>]J−1m (τ2)un(τ1 ∧ τ2 − τ1τ2)

exists for any τ1, τ2 ∈ T , then

√
n

‖un‖

(
u>n β̂(·)− u>n γn(·)

)
 G(·) in `∞(T ), (3.1)

where G(·) is a centered Gaussian process with the covariance func-
tion H̃. In particular, there exists a version of G with almost surely
continuous sample paths.
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Tensor-Product Spline

Conjecture(Demko et al., 1984, Sec.5): the elements of J−1m (τ)
from the tensor-product spline B are also decreasing
geometrically away from the main diagonal

(c) Jm(τ),dim(X) = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

12
34
56
78
910
1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334
3536
3738
3940
4142
4344
4546
4748
4950
5152
5354
5556
5758
5960
6162
6364
6566
6768
6970
7172
7374
7576
7778
7980
8182
8384
8586
8788
8990
9192
9394
9596
9798
99100

(d) J−1
m (τ), dim(X) = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

12
34
56
78
910
1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334
3536
3738
3940
4142
4344
4546
4748
4950
5152
5354
5556
5758
5960
6162
6364
6566
6768
6970
7172
7374
7576
7778
7980
8182
8384
8586
8788
8990
9192
9394
9596
9798
99100
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Application: Partial Linear Model

Partial Linear Model:

Q(X; τ) = V >α(τ) + h(W ; τ), (3.2)

where X = (V >,W>)> ∈ Rk+k′ and k, k′ ∈ N are fixed.

Expanding w 7→ h(w; τ) in terms of basis vectors w 7→ Z̃(w), we
can approximate (3.2):

Q(x; τ) ≈ Z(x)>βn(τ)

where Z(x) = (v>, Z̃(w)>)> and βn = (α(τ)>,β†n(τ)>)>

Quantile Regression gives α̂(τ) and ĥ(w; τ) = Z̃(w)>β̂†n(τ)
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Assumption (B):

(B1) Define c†n := supτ,w |Z̃(w)>β†n(τ)−h(w; τ)| and assume that

ξmc
†
n = o(1);

sup
τ∈T

E[fY |X(Q(X; τ)|X)‖hVW (W ; τ)−A(τ)Z̃(W ))‖2] = O(λ2n)

with ξmλ
2
n = o(1)

(B2) We have maxj≤k |Vj | < C almost surely for some constant
C > 0.

(B3) (
mξ

2/3
m log n

n

)3/4

+ c†2n ξm = o(n−1/2).

Moreover, assume that c†nλn = o(n−1/2) and

mc†n log n = o(1).
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Joint Process Convergence

Under Assumption (A) and (B), suppose at w0,

Γ22(τ1, τ2)

= lim
n→∞

‖Z̃(w0)‖−2Z̃(w0)
>M2(τ1)

−1E[Z̃(W )Z̃(W )>]M2(τ2)
−1Z̃(w0)

exists, then( √
n
{
α̂(·)−α(·)

}
√
n

‖Z̃(w0)‖

{
ĥ(w0; ·)− h(w0; ·)

} ) (
G1(·), ...,Gk(·),Gh(w0; ·)

)>
,

in (`∞(T ))k+1 where (G1(·), ...,Gk(·),Gh(w0; ·)) are centered
Gaussian processes with joint covariance function

Γ(τ1, τ2; Z̃(w0)) = (τ1 ∧ τ2 − τ1τ2)
(

Γ11(τ1, τ2) 0k
0>k Γ22(τ1, τ2)

)
Detail

In particular, there exists a version of Gh(w0; ·) with almost
surely continuous sample paths.
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Remarks

Most asymptotic results for partial linear model separately
study the parametric and nonparametric part

Joint asymptotics phenomenon for mean partial linear
model: Cheng and Shang (2015)

We show such joint asymptotics holds in process sense for
quantile model
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Thank you for your attention

arXiv 1604.02130
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Detail for PLM

M2(τ) := E
[
Z̃(W )Z̃(W )>fY |X(Q(X; τ)|X)

]
Γ11(τ1, τ2)

= M1,h(τ1)
−1E

[
(V − hVW (W ; τ1))(V − hVW (W ; τ2))

>]M1,h(τ2)
−1

where M1,h(τ) =
E
[
(V − hVW (W ; τ))(V − hVW (W ; τ))>fY |X(Q(X; τ)|X)

]
Partial Linear Model
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