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Modern applications lead to data sets so large that cannot be
stored in a single machine

v

Social media (views, likes, comments, images...)
» Meteorological and environmental surveillance
» Transactions in e-commerce

» Others...

Figure: A Google server room in Council Bluffs, lowa.
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Computational bottlenecks

» Big data cannot fit into the memory of typical computers

» Many classical statistical methods cannot be performed,
e.g. maximum likelihood, Bayesian analysis...

» Buying a computer with huge memory is expensive

» Common solution: buying many usual computers
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Divide and Conquer (D&C) framework

v

Divide N data into m subsamples. n = N/m: subsample size

v

Each local machine processes one subsample

v

Central computer aggregates outcomes from local machines
(costs computational overhead)

v

Applied with communication-efficient algorithm: minimize the
number of times the central computer calls local machines

Problem (V)
subproblem
subproblem subproblem subproblem (n)

(n) (n) (n)
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D&C looks nice...but is it always accurate?

| will give two examples
1st example: sample mean v/

2nd example: sample quantile ?
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Example 1: sample mean

Problem (V)
subproblem
subproblem subproblem  Subproblem (n)
(o) @) (n) o
X ~ X Xn<4
Xn,l X/,L_Q X7L,3 ]
1< 1 n N
12X =2 Z
= s=li= =1 global mean

Avg. local means

It fits!

6
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Example 2: sample quantile at 7 € (0,1)

Quantile Q(7) = | N7| order statistics

Problem(1V)
b subproblem
subproblem subproblem subproblem (n)
(n) (n) (n) o'(r)
Q'(7) 02(r) Q*(7)
1o 7
>.Q%(r) = Q(r)
4 s=1 N

global quantile
Avg. local quantiles
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X; ~ N(0,1). N = 2. Repeat 20 times (20 black curves).
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1=0.9

02 04 06
logn(m)

The relative size of m to N matters!
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Challenges

» When does the D&C algorithm work uniformly in 7:
m < m*. What is m*?
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QOutline

Two-step procedure

Tuning m and K for the oracle rules

Confidence intervals (Cls)

Simulation
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Quantile regression as optimization
Linear model: Q(x;7) = x"3(7)
Koenker and Bassett (1978): Estimate 3(7) by
R N
Bor(7) := arg min ;pT(Y,- —b'X))
where p,(u) := Tu™ + (1 — 7)u™ 'check function’.

» or: oracle, the best we can obtain with sufficient
computational resource

» Optimization problem is convex (but non-smooth)
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Computational challenges

aor(XO; T) = XoTBor(T)

for any xp: a fixed vector

» Computing é\or(Xo;T) at a fixed 7 requires to load all N data
in computer memory, which is infeasible when, e.g. N =1TB

» Computing @o,(xo;T) for many 7 is impossible
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Two-step procedure
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Step 1: D&C algorithm at fixed 7

Local machine M  computes @s(XO;T), s=1,...,m with
quantile regression (= solving the optimization problem)

M, Mo Ms M,

Q' (wo;T) Q?* (x5 7) Q* (05 7) Q*(wo; 7)

the central computer computes

m
1
Xoy = E Xo,
m —
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Tuning m (number of computers)

Greater m

v/ computational efficiency: each local computer processes
less data

X statistical accuracy: may suffer from great statistical error

16
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Q(xo;7) is only for a fixed 7...

NI/

@ Take a grid {71, ..., 7« } on [r, 7y] C (0,1), calculate
=1

Q(x0; Tx) H_,, then project them to a spline space of T
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Step 2: Quantile projection

B : B-splines defined on G knots in [, 7y] C (0,1)

@(xo; 7) := ag B(7)
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Step 2: Quantile projection

B : B-splines defined on G knots in [, 7y] C (0,1)

@(Xo; 7) := ag B(7)

1. Take a grid of quantile levels {7y, ...,7x} on [11,Ty], K > q
2. Compute Q(xo; 7x) for each 7 (one pass over entire data)

3. (Central machine) Project* {Q(xo; 7x)}« on the spline space

K

~ . = T 2
= ; —a B
Qg ;= arg ortrélﬂgq; (Q(xo, Tk) — @ (Tk))

*with respect to inner product (f,g)x = Y1, f(7k)g(7k)
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Computation of ﬁy|x(y|X)

Given @, the central computer can compute Q(xo; 7) = &g B(7)
for many 7 at almost no cost

/':Y\x(y|Xo) =T +/ l{a(XO?T) < y}dr.

TL
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Tuning K (quantile grid size)

Greater K

X computational efficiency: more Q(xo; 74) to compute

v/ statistical accuracy: better projection performance
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Tuning m and K for the oracle rules
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Oracle rule: 5, @ and I/:\y|X have the same limiting
distribution as the oracles obtained by super computers

How to tune m and K so that the oracle rule holds?
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No. quantile grid

KA

A

Oracle rule region

Lowest computational
efficiency

Higher comp. efficiency

Higher comp. efficiency

Highest comp. efficiency

=m
No. of machines
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(D
What are the boundaries? @
g

l
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KA

7)-: smoothness
of CDF

N1/@n)

1
I
1
1
1
I
1
1

Figure: Blue region: oracle rule holds. Boundary of K is unimprovable.
2 may be improved to N'/2, but no further.

N2
For m, log NV

N1/2
log N
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Why is N*/?(log N)~! sufficient?

VN(Q(xoi7) = Q(xoi7)
— VA(Qi 7) ~ E[@(xi 7)]) + N Bias( Qi )

~ N oracle rule o(1)?

sup Bias(Q(xp; 7)) < Ioin < \% = rate of SD(Q(xo; 7))

Hence, m = o(N'/?(log N)~1), if we recall n = N/m
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m cannot go beyond N'/?

For some distribution, the bias is bounded from below:

N 1 _
— = — < Bias of Q(xo;7)
m n

7

computational limit
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m cannot go beyond N'/2

For some distribution, the bias is bounded from below:

N 1 —
— = — < Bias of Q(xo;7)
m n 5

computational limit

If m > +/N, then Bias(Q(xo; 7)) = 1> LN

V'N Bias(Q(xo; 7)) is nonvanishing, so the oracle rule fails
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Confidence intervals (Cls)
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Oracle confidence intervals

Oracle rules: asymptotic normality of Q(xo; 7) and Ey|x(y|X0)
Q(x0: 7) 1 [Q(x0i T) £ 210 /2 NY2SD(Q(x0; 7))]
Fyix(v1x0) : [Fyix(y1x0) £ 21-a/2 N*°SD(Fy x(y|x0))]

> 21_qo/9: critical value from standard normal, o = 5%

» Var(Q(xp; 7)) and Var(l?y|x(y\xo)) depending on the
underlying distribution are usually unknown
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Qlxo;7) = m 1™ Q%(xo; 7) is an " average”
—_——

i.i.d. "samples”

Y N
:@: Central computer has Q°(xp; 7¢) i.i.d. and close to N for
Wf  each machine s =1,...,m and grid point k =1, ..., K
v

30
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2

> 00,7’

(m—1)" 0 (Q(x0i7) —

Q|

(x0:7))°
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> 0-8,7' =(m-1) ! 25:1 (QS(Xo;T) — Q(Xo;T))
» Small m: the distribution of Q(xp;7) is "close” to normal

[Q(x0;7) £ m~1/? tm—1,1—a/2 00,7 ] (t-quantile)
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> 53, = (m—1)" T (Q0im) ~ Qi)

> Small m: the distribution of Q%(xo; 7) is " close” to normal
[Q(x0;7) £ m~1/? tm—1,1—a/2 00,7 ] (t-quantile)

> Large m: t,,—1 is "close” to standard normal

[Q(xo;7) + mfl/zzl,a/z o] (N-quantile)
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> 53, = (m—1)" T (Q0im) ~ Qi)

> Small m: the distribution of Q%(xo; 7) is " close” to normal
[Q(x0;7) £ m~1/? tm—1,1—a/2 00,7 ] (t-quantile)

> Large m: t,,—1 is "close” to standard normal

[Q(xo;7) + mfl/zzl,a/z o] (N-quantile)

This cannot be extended to the projection estimator,
for which we need to deal with all 7 € [r, 7y]

31/51



Bootstrap

Generate i.i.d. {wsp}s=1,. mb=1,. 8 (independent from data)

m

Alb) . 1 Ws,b 3 .
Q" (x0; k) == - 52_31 o Q°(x0; Tk)

- . —1 m
W.p = m Zs:l Ws,b
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Bootstrap

Generate i.i.d. {wsp}s=1,. mb=1,. 8 (independent from data)

m

—=(b) . L 1 Ws.b A )
Q" (x0; k) == - 52_31 o Q°(x0; Tk)

- . -1 m
w‘vb =m Zs:l ws,b

-----

QW) (x; ) = agb)TB(-)

~ TU ~
A0 =7+ [ 1{@ i) < y)or

TL
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Simulation
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Simulation

v

v

v

v

v

Yi =021+ B)_1X; +ei, & ~ N(0,0.12)
X; ~U([0,1]P~1)
p=4,32

Q(x0;7) = 0.21+ 3] ;x0 + 0.1071(7), ®: distribution
function of N(0,1)

Simulate coverage = P{Q(xp; 7) € Cl,, for Q(xo;7)}

Oracle rule holds if coverage = 1 — a = 95%
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Cl for Q(xo; ), fixed T

p=4
o | =05 o | =09
3o | Se
E © —— oracle asymp. Cl n=2"9 E ©
(%] - -- oracle asymp. CIn=2"11 | @
3 3 — —quant. n=2" 334
8¢° T Gmumnzn | B O
N Cl, N-quant. n=2"9 o~
o - -- CI,N-quant. n=2°11 S 7
bootstrap n=2"9, B=500
o | bootstrap n=211, B=500 o |
] T T T T T S T T T T T
6 8 10 6 8 10
logy(m) log,(m)
» 7 =0.9: drop after certain m; 7 = 0.5: m not large enough
» m small, bootstrap and N-quant perform badly
» t-quant performs well even for small m

» coverage performs better for bigger n (dashed lines)
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Cl coverage for Q(x;7), fixed 7
p=4

coverage

coverage

° 1=05 . 1=09

= = . e

@ @ | ZZ -

o =] f

o | ol /

C — oracleasymp. Cin=2rg | © © /)

< - - - oracle asymp. Cl n=2"11 0>J < y

- — ClI, t-quant. n=2"9 Lo

e - -+ Cl,t-quant. n=2"11 8 e

~ —— CI, N-quant, n=2"9 ~

o ==+ Cl, N-quant. n=2"11 o
~—— bootstrap n=2"9, B=500

o | -~ - bootstrap n=2"11, B=500 o |

o T T T T T o T T T T T
6 8 10 6 10

logz(m) 3 logz(m)

o 1=05 o 1=0.9

— N —

Q > @ |

ol .~ =]

o | o]

o g o

< % <

o o o

o~ N

o o

o | <o |

o T T T T T o T T T T T
6 8 10 6 8 10

logz(m) logz(m)
p increases, coverage drops early for 7 = 0.9
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Quantile projection

v

Quantile grid no. K, no. of knots G are large to undersmooth

» K =65, G = 32 equidistant knots on [0.05,0.95]
» B: cubic B-spline basis with dim(B) = 28

> n:29

> yo = Q(x0;7) so that Fy|x(yolx0) =T

v

Simulate coverage = P{7 € Cl, for Fy|x(yo|x0)}

Oracle rule holds if coverage = 1 — a = 95%
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Cl coverage for Fyx(yolx0) =7
o | 1=0.5,p=4 o | 1=0.9,p=4
— —
© | @ |
o o
g3 3
E g < |
8 o 8o
o o
© —— oracle asymp. Cl n=2"9 <
o | — bootstrap n=2"9, B=500 o |
= T T T T T =] T T T T T
2 4 6 8 10 2 4 6 8 10
logz(m) log,(m)
o | 1=0.5,p=32 o | 1=0.9,p=32
— —
© | @ |
o o
g < g < |
8 o 8 o
| N
o o
o | o |
= T T T T T =] T T T T T
2 4 6 8 10 2 4 6 8 10
logz(m) logz(m)
» p = 4: coverage drops after certain m

v

p = 32: n may be too small for the oracle rule to hold;
bootstrap Cl can be more accurate (correcting for skewness?)
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Thank you for your attention!

Volgushev, S., Chao, S.-K. and Cheng, G. (2019). Distributed inference
for quantile regression processes. Annals of Statistics, 47(3): 1634-1662.
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Divide-and-conquer literature

m*

>

vV V. v v Y

is characterized under different settings, mainly for mean function

Li et al. ("12): estimate kernel density and distribution parameter,
notice that the bias determines n >> /N log log N

Jordan ('13): Bag of Little Bootstraps (e.g. subsample size
n = N°7), SVD, denoising problem

Zhang et al. ('13): empirical risk minimization with parametric
smooth loss function, MSE

Zhang et al. ('15): kernel ridge regression with minimax MSE
Zhao et al. ('16): PLM, asymp. dist. and minimax MSE
Shang and Cheng ('17): smoothing spline minimax testing
Banerjee et al. ('18+): isotonic regression, non-Gaussian limit
Shi et al. ('184): M-estimator with cubic rate

This talk: conditional quantile and distribution function,
unimprovability for the bound of m, computationally efficient Cls
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P =P(&, M, F, ' frin): class of distributions of (X, Y) with
for some constants 0 < &,, M, f,f’ < oo and
fmin >0

» Back to oracle rule
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Assumption (A): data (X, Yi)i=1,. n are i.i.d. with
(A1) Assume that [|Xi|| <&, < 00, and that

1/M < Ain(EIXXT]) < Amax(E[XXT]) < M
for some fixed constant M.

(A2) The conditional distribution Fy|x(y|x) is twice differentiable
w.r.t. y. Denote the corresponding derivatives by fy|x(y|x)
and f\//|x()/|x)- Assume that

f o= sup|fyjx(y[x)| < oo, = sup|fyx(y|x)| < oo
y,x Y, X

uniformly in n.

(A3) Assume that

0< fmin < inf inf fY|X(Q(X;T)‘X)'

TE[TLvTU] X
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02(x0) = x4 p(7) EIXX ] p(7) x0 7(1— 7)
E[G(T)G(T/)] = XOTJP(T)_IE[XXT]JP(T/)_IXO (AT —77")

E[G1(y)G1(y")] = fyix(v1x0)fyix (¥'|x0)
E[G(Fyx(y1x0))G(Fyx(¥'Ix0))]

where J,(7) = E[fy|x(Q(xo; 7)|x0)XX ] is the Hessian matrix
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Auxiliary information on simulation

» X; ~U([0,1]P~1) with covariance x := E[X;X;"], where
Y = 0.120.7U=K for j ik =1,...p— 1
> xo=(1,(p—1)"MA]_)T
> B(r) =(021+0.1x b1y (7),8) )",
Bs = (0.21,-0.89,0.38)T;
B1s = (83 ,0.63,0.11,1.01, —1.79, —1.39,
0.52,—1.62,1.26, —0.72,0.43, —0.41, —0.02) ";

B3 = (B15,0.21,85) .
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VN(Q(x0: ) = Q(x0: )
= VN(Q(x0; -) — E[Q(x0; )]) + VN Bias(Q(xo; -))

~+ G oracle rule force it o(1)
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VN(Q(x0i-) — Q(x0i )
= VN(Q(x0; -) — E[Q(x0; )]) + VN Bias(Q(xo; -))

~+ G oracle rule force it o(1)

G: number of knots

sup Bias(@(xo; 7)) < Bias of projection + sup Bias(Q(xo; 7))

T

<G4 log n
~ n
1
<< -
N
. NL/2
this inequality holds when K > G > N"/(7) and m < 5.
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> Bias(Q(x0;-)) = G > K~ (fora P € P) for all m

If K < NV /N Bias(Q(xg; ) = (M)ﬂf

X

> When K > G > NY(7), Bias(Q(xp;-)) = L (fora P € P)

If m > NY2, v/N Bias(Q(x; -)) = YN = -
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No. quantile grid
Kk

7)-: smoothness
of CDF

N (@n-)

(%) 1/(2n7)

No. of machines

L L -m
P72 logZ N logN

Figure: Oracle rule of linear and nonparametric model.
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Fyix(y|x), e ~ N(0,0.1%), Oracle CI, N = 24

Normal(0, 0.1%) , p=4,yo=Q(Xo;1=0.1) Normal(0, 0.1%), p=4,yo=Q(Xo;1=0.9)
o o
Q_;J—;_'_:__ .
@ | @ |
3 3
z z
3 H
23 23
2 2
& &
P P
g g
| g |
e *
g
o o
— q=7,K=20
o & | == q=7,K=3
P S| — q=10,K=20
- - ¢=10,K=30
— g=15,K=20
o] o] - - g=15,K=30
3 3
T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.6 0.8
logy(m)

0.4
logy(m)

q = dim(B), B: cubic B-spline basis for projection, K : # quantile grid points

» 7 =0.1: interplay between bias from high m (# machines)
and bias from low g = dim(B) (oversmoothing)

» Either large m or small g corrupts the oracle rule

» Coverage is no longer symmetric in 7
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Fyix(y|x), e ~ N(0,0.1%), Oracle CI, N = 24

Coverage Probability

Coverage Probability

06

04

02

00

Normal(0, 0.1%) , p=4 , yo=Q(%p; T=0.1)

p=4

Normal(0,0.1%) , p=4 , yo=Q(%; T=0.9)

06
L

Coverage Probabilty
0.4

=5
3
T T T T v T
00 02 04 08 08 08
logy(m)
Normal(0,0.1%) , p=32,yo=Q(xo;T=0.1)
2]
z
EPY
23
&
g
8
30
— q=15.K=20
- - q=15,K=30 =
T T T T T T T T
00 02 06 08 0 02 06 08

04
logy(m)

T
log(m)

Increase in p lowers both m* (bad) and g* (good)
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Reference Energy Disaggregation Data Set (REDD)

» Public accessible

> Disaggregated: 30 households, measurements from 24
devise-specific electricity consumption sources: microwave,
refrigerator, dishwasher, electronics, lighting...

» Numeric data (Watts), entire data size > 1 TB

» Preliminary idea: compare the distribution of energy
consumption across different devices and different time in a
day
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Typical weekend day, Sunday,09/02/12

Den & livrm lights @l kitchen wall (laundry side) plugs EEm hall bath & fire alg
B unlabeled Em oven
unlabeled @ unlabeled EEm oven
unlabeled B unleabeled B unlabeled
t hall/hallway/beds 1.2.3 lights | |- lights (kit/din./laund/bath)|
spa B unlabeled B bathroom plug
spa | mmm washer Bl unlabeled
master plugs EEm unlabeled EEm unlabeled
5000
4000
3000
2000
Power
Draw
(watts) 1000
% 5 10
Hour of Day

[Kolter and Johnson, 2011]

51/51



	Two-step procedure
	Tuning m and K for the oracle rules
	Confidence intervals (CIs)
	Simulation

