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Modern applications lead to data sets so large that cannot be
stored in a single machine

I Social media (views, likes, comments, images...)

I Meteorological and environmental surveillance

I Transactions in e-commerce

I Others...

Figure: A Google server room in Council Bluffs, Iowa.
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Computational bottlenecks

I Big data cannot fit into the memory of typical computers
I Many classical statistical methods cannot be performed,

e.g. maximum likelihood, Bayesian analysis...

I Buying a computer with huge memory is expensive

I Common solution: buying many usual computers
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Divide and Conquer (D&C) framework

I Divide N data into m subsamples. n = N/m: subsample size

I Each local machine processes one subsample

I Central computer aggregates outcomes from local machines
(costs computational overhead)

I Applied with communication-efficient algorithm: minimize the
number of times the central computer calls local machines

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)
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D&C looks nice...but is it always accurate?

I will give two examples

1st example: sample mean 3

2nd example: sample quantile ?
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Example 1: sample mean

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)

Xn,1 Xn,2
Xn,3

Xn,4

1

4

4∑

s=1

X s

︸ ︷︷ ︸
Avg. local means

=
1

4n

4∑

s=1

n∑

i=1

Xis =
1

N

N∑

i=1

Xi = XN︸︷︷︸
global mean

.

It fits!
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Example 2: sample quantile at τ ∈ (0, 1)

Quantile Q̂(τ) = bNτc order statistics

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)

Q̂1(τ) Q̂2(τ) Q̂3(τ)
Q̂4(τ)

1

4

4∑

s=1

Q̂s(τ)

︸ ︷︷ ︸
Avg. local quantiles

??
= Q̂(τ)︸ ︷︷ ︸

global quantile
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Xi ∼ N(0, 1). N = 215. Repeat 20 times (20 black curves).

Q(τ) = Φ−1(τ) v.s. m−1
m∑

s=1

Q̂s(τ)
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The relative size of m to N matters!
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Challenges

I When does the D&C algorithm work uniformly in τ :
m < m∗. What is m∗?

I Statistical inference for the whole distribution F?
I More than conditional mean literature
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Outline

Two-step procedure

Tuning m and K for the oracle rules

Confidence intervals (CIs)

Simulation
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Quantile regression as optimization

Linear model: Q(x ; τ) = x>β(τ)

Koenker and Bassett (1978): Estimate β(τ) by

β̂or (τ) := arg min
b

N∑

i=1

ρτ (Yi − b>Xi )

where ρτ (u) := τu+ + (1− τ)u− ’check function’.

I or: oracle, the best we can obtain with sufficient
computational resource

I Optimization problem is convex (but non-smooth)
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Computational challenges

Q̂or (x0; τ) := x>0 β̂or (τ)

for any x0: a fixed vector

I Computing Q̂or (x0; τ) at a fixed τ requires to load all N data
in computer memory, which is infeasible when, e.g. N =1TB

I Computing Q̂or (x0; τ) for many τ is impossible
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Two-step procedure

Tuning m and K for the oracle rules

Confidence intervals (CIs)

Simulation
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Step 1: D&C algorithm at fixed τ

Local machine Ms computes Q̂s(x0; τ), s = 1, ...,m with
quantile regression (= solving the optimization problem)

M1

Q̂1(x0; τ)

M2 M3 M4

Q̂2(x0; τ) Q̂3(x0; τ) Q̂4(x0; τ)

the central computer computes

Q(x0; τ) :=
1

m

m∑

s=1

Q̂s(x0; τ)
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Tuning m (number of computers)

Greater m

3 computational efficiency: each local computer processes
less data

7 statistical accuracy: may suffer from great statistical error
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Q(x0; τ) is only for a fixed τ ...

Take a grid {τ1, ..., τK} on [τL, τU ] ⊂ (0, 1), calculate

{Q(x0; τk)}Kk=1, then project them to a spline space of τ
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Step 2: Quantile projection

B : B-splines defined on G knots in [τL, τU ] ⊂ (0, 1)

Q̂(x0; τ) := α̂>0 B(τ)

1. Take a grid of quantile levels {τ1, ..., τK} on [τL, τU ], K > q

2. Compute Q(x0; τk) for each τk (one pass over entire data)

3. (Central machine) Project* {Q(x0; τk)}k on the spline space

α̂0 := arg min
α∈Rq

K∑

k=1

(
Q(x0; τk)−α>B(τk)

)2

*with respect to inner product 〈f , g〉K =
∑K

k=1 f (τk)g(τk)
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Computation of F̂Y |X (y |x)

Given α̂0, the central computer can compute Q̂(x0; τ) = α̂>0 B(τ)
for many τ at almost no cost

F̂Y |X (y |x0) := τL +

∫ τU

τL

1{Q̂(x0; τ) < y}dτ.
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Tuning K (quantile grid size)

Greater K

7 computational efficiency: more Q(x0; τk) to compute

3 statistical accuracy: better projection performance
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Two-step procedure

Tuning m and K for the oracle rules

Confidence intervals (CIs)

Simulation
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Oracle rule: Q, Q̂ and F̂Y |X have the same limiting
distribution as the oracles obtained by super computers

How to tune m and K so that the oracle rule holds?
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K

m

No. quantile grid

No. of machines

Oracle rule region

efficiency
Lowest computational

Higher comp. efficiency Highest comp. efficiency

Higher comp. efficiency
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What are the boundaries?
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K

m
N1/2

logN

N 1/(2ητ )

N 1/2

ητ : smoothness
of CDF

Figure: Blue region: oracle rule holds. Boundary of K is unimprovable.

For m, N1/2

logN may be improved to N1/2, but no further.
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Why is N1/2(logN)−1 sufficient?

√
N(Q(x0; τ)− Q(x0; τ))

=
√
N
(
Q(x0; τ)− E[Q(x0; τ)]

)
︸ ︷︷ ︸

 N oracle rule

+
√
N Bias(Q(x0; τ))︸ ︷︷ ︸

o(1)?

sup
τ

Bias(Q(x0; τ)) .
log n

n
� 1√

N
� rate of SD(Q(x0; τ))

Hence, m = o(N1/2(logN)−1), if we recall n = N/m
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m cannot go beyond N1/2

For some distribution, the bias is bounded from below:

N

m
=

1

n
. Bias of Q(x0; τ)

︸ ︷︷ ︸
computational limit

If m &
√
N, then Bias(Q(x0; τ)) & 1

n &
1√
N

,

√
N Bias(Q(x0; τ)) is nonvanishing, so the oracle rule fails
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Two-step procedure

Tuning m and K for the oracle rules

Confidence intervals (CIs)

Simulation
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Oracle confidence intervals

Oracle rules: asymptotic normality of Q(x0; τ) and F̂Y |X (y |x0)

Q(x0; τ) :
[
Q(x0; τ)± z1−α/2N

1/2SD(Q(x0; τ))
]

FY |X (y |x0) :
[
F̂Y |X (y |x0)± z1−α/2N

1/2SD(F̂Y |X (y |x0))
]

I z1−α/2: critical value from standard normal, α = 5%

I Var(Q(x0; τ)) and Var(F̂Y |X (y |x0)) depending on the
underlying distribution are usually unknown
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Q(x0; τ) = m−1
∑m

s=1 Q̂
s(x0; τ)︸ ︷︷ ︸

i.i.d. ”samples”

is an ”average”

Central computer has Q̂s(x0; τk) i.i.d. and close to N for
each machine s = 1, ...,m and grid point k = 1, ...,K
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I σ̂20,τ = (m − 1)−1
∑m

s=1

(
Q̂s(x0; τ)− Q(x0; τ)

)2

I Small m: the distribution of Q̂s(x0; τ) is ”close” to normal

[
Q(x0; τ)±m−1/2tm−1,1−α/2 σ̂0,τ

]
(t-quantile)

I Large m: tm−1 is ”close” to standard normal

[
Q(x0; τ)±m−1/2z1−α/2 σ̂0,τ

]
(N-quantile)

This cannot be extended to the projection estimator,
for which we need to deal with all τ ∈ [τL, τU ]
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Bootstrap

Generate i.i.d. {ωs,b}s=1,...,m,b=1,...,B (independent from data)

Q
(b)

(x0; τk) :=
1

m

m∑

s=1

ωs,b

ω̄·,b
Q̂s(x0; τk)

ω̄·,b = m−1
∑m

s=1 ωs,b

Project {Q(b)
(x0; τk)}k=1,...,K on spline space (as Step 2)

Q̂(b)(x0; ·) = α̂
(b)>
0 B(·)

F̂
(b)
Y |X (y |x0) = τL +

∫ τU

τL

1{Q̂(b)(x0; τ) < y}dτ
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Two-step procedure

Tuning m and K for the oracle rules

Confidence intervals (CIs)

Simulation
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Simulation

I Yi = 0.21 + β>p−1Xi + εi , εi ∼ N (0, 0.12)

I Xi ∼ U([0, 1]p−1) Additional information

I p = 4, 32

I Q(x0; τ) = 0.21 + β>p−1x0 + 0.1Φ−1(τ), Φ: distribution
function of N(0, 1)

I Simulate coverage = P{Q(x0; τ) ∈ CIα for Q(x0; τ)}

Oracle rule holds if coverage = 1− α = 95%
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CI for Q(x0; τ), fixed τ

p = 4

2 4 6 8 10
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log2(m)
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oracle asymp. CI n=2^9
oracle asymp. CI n=2^11
CI, t−quant. n=2^9
CI, t−quant. n=2^11
CI, N−quant. n=2^9
CI, N−quant. n=2^11
bootstrap n=2^9, B=500
bootstrap n=2^11, B=500
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0.
4
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6
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1.
0 τ = 0.9

log2(m)
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ra
ge

I τ = 0.9: drop after certain m; τ = 0.5: m not large enough

I m small, bootstrap and N -quant perform badly

I t-quant performs well even for small m

I coverage performs better for bigger n (dashed lines)
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CI coverage for Q(x0; τ), fixed τ
p = 4
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I p increases, coverage drops early for τ = 0.9
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Quantile projection

I Quantile grid no. K , no. of knots G are large to undersmooth
I K = 65, G = 32 equidistant knots on [0.05, 0.95]
I B: cubic B-spline basis with dim(B) = 28

I n = 29

I y0 = Q(x0; τ) so that FY |X (y0|x0) = τ

I Simulate coverage = P{τ ∈ CIα for FY |X (y0|x0)}

Oracle rule holds if coverage = 1− α = 95%
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CI coverage for FY |X (y0|x0) = τ
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I p = 4: coverage drops after certain m
I p = 32: n may be too small for the oracle rule to hold;

bootstrap CI can be more accurate (correcting for skewness?)
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Thank you for your attention!

Volgushev, S., Chao, S.-K. and Cheng, G. (2019). Distributed inference

for quantile regression processes. Annals of Statistics, 47(3): 1634–1662.
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Divide-and-conquer literature Back

m∗ is characterized under different settings, mainly for mean function

I Li et al. (’12): estimate kernel density and distribution parameter,
notice that the bias determines n�

√
N log logN

I Jordan (’13): Bag of Little Bootstraps (e.g. subsample size
n = N0.7), SVD, denoising problem

I Zhang et al. (’13): empirical risk minimization with parametric
smooth loss function, MSE

I Zhang et al. (’15): kernel ridge regression with minimax MSE

I Zhao et al. (’16): PLM, asymp. dist. and minimax MSE

I Shang and Cheng (’17): smoothing spline minimax testing

I Banerjee et al. (’18+): isotonic regression, non-Gaussian limit

I Shi et al. (’18+): M-estimator with cubic rate

This talk: conditional quantile and distribution function,
unimprovability for the bound of m, computationally efficient CIs
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P = P(ξp,M , f̄ , f ′, fmin): class of distributions of (X ,Y ) with
Assumption (A) for some constants 0 < ξp,M , f̄ , f ′ <∞ and

fmin > 0

Back to oracle rule
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Assumption (A): data (Xi ,Yi )i=1,...,N are i.i.d. with Linear models

(A1) Assume that ‖Xi‖ ≤ ξp <∞, and that

1/M ≤ λmin(E[XXT ]) ≤ λmax(E[XXT ]) ≤ M

for some fixed constant M.

(A2) The conditional distribution FY |X (y |x) is twice differentiable
w.r.t. y . Denote the corresponding derivatives by fY |X (y |x)
and f ′Y |X (y |x). Assume that

f̄ := sup
y ,x
|fY |X (y |x)| <∞, f ′ := sup

y ,x
|f ′Y |X (y |x)| <∞

uniformly in n.

(A3) Assume that

0 < fmin ≤ inf
τ∈[τL,τU ]

inf
x
fY |X (Q(x ; τ)|x).
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σ2τ (x0) = x>0 Jp(τ)−1E[XX>]Jp(τ)−1x0 τ(1− τ)

E
[
G(τ)G(τ ′)

]
= x>0 Jp(τ)−1E

[
XX>

]
Jp(τ ′)−1x0 (τ ∧ τ ′ − ττ ′)

E
[
G1(y)G1(y ′)

]
= fY |X (y |x0)fY |X (y ′|x0)

E
[
G(FY |X (y |x0))G(FY |X (y ′|x0))

]

where Jp(τ) = E[fY |X (Q(x0; τ)|x0)XX>] is the Hessian matrix
Back to oracle rule
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Auxiliary information on simulation

I Xi ∼ U([0, 1]p−1) with covariance ΣX := E[XiX
>
i ], where

Σjk = 0.120.7|j−k| for j , k = 1, ..., p − 1

I x0 = (1, (p − 1)−1/2l>p−1)>

I β(τ) = (0.21 + 0.1× Φ−1σ=0.1(τ),β>p−1)>,

β3 = (0.21,−0.89, 0.38)>;

β15 = (β>3 , 0.63, 0.11, 1.01,−1.79,−1.39,

0.52,−1.62, 1.26,−0.72, 0.43,−0.41,−0.02)>;

β31 = (β>15, 0.21,β>15)>.

Simulation setting
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√
N(Q̂(x0; ·)− Q(x0; ·))

=
√
N
(
Q̂(x0; ·)− E[Q̂(x0; ·)]

)
︸ ︷︷ ︸

 G oracle rule

+
√
N Bias(Q̂(x0; ·))︸ ︷︷ ︸
force it o(1)

G : number of knots

sup
τ

Bias(Q̂(x0; τ)) ≤ Bias of projection + sup
τ

Bias(Q(x0; τ))

. G−ητ +
log n

n

� 1√
N

this inequality holds when K � G � N1/(2ητ ) and m� N1/2

logN .

Back to oracle rule of Q̂

45 / 51



√
N(Q̂(x0; ·)− Q(x0; ·))

=
√
N
(
Q̂(x0; ·)− E[Q̂(x0; ·)]

)
︸ ︷︷ ︸

 G oracle rule

+
√
N Bias(Q̂(x0; ·))︸ ︷︷ ︸
force it o(1)

G : number of knots

sup
τ

Bias(Q̂(x0; τ)) ≤ Bias of projection + sup
τ

Bias(Q(x0; τ))

. G−ητ +
log n

n

� 1√
N

this inequality holds when K � G � N1/(2ητ ) and m� N1/2

logN .

Back to oracle rule of Q̂
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I Bias(Q̂(x0; ·)) & G−ητ � K−ητ (for a P ∈ P) for all m

If K . N1/(2ητ ),
√
N Bias(Q̂(x0; ·)) &

(
N1/(2ητ )

K

)ητ

I When K � G � N1/(2ητ ), Bias(Q̂(x0; ·)) & 1
n (for a P ∈ P)

If m & N1/2,
√
N Bias(Q̂(x0; ·)) &

√
N
n � m√

N

Back to oracle rule for Q̂
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K

m
N1/2

logN

N1/(2ητ )

N1/2N1/2

p1/2 log2N

(
N
p

)1/2

(
N
p

)1/(2ητ )

No. quantile grid

No. of machines

ητ : smoothness
of CDF

Figure: Oracle rule of linear and nonparametric model.

Back
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FY |X (y |x), ε ∼ N (0, 0.12), Oracle CI, N = 214

p = 4
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q = dim(B), B: cubic B-spline basis for projection, K : # quantile grid points

I τ = 0.1: interplay between bias from high m (# machines)
and bias from low q = dim(B) (oversmoothing)

I Either large m or small q corrupts the oracle rule

I Coverage is no longer symmetric in τ
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FY |X (y |x), ε ∼ N (0, 0.12), Oracle CI, N = 214

p = 4
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p = 32
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Increase in p lowers both m∗ (bad) and q∗ (good)
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Reference Energy Disaggregation Data Set (REDD)

I Public accessible

I Disaggregated: 30 households, measurements from 24
devise-specific electricity consumption sources: microwave,
refrigerator, dishwasher, electronics, lighting...

I Numeric data (Watts), entire data size > 1 TB

I Preliminary idea: compare the distribution of energy
consumption across different devices and different time in a
day

Back to future study
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[Kolter and Johnson, 2011]

Back to future study
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