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• Data growing faster than processing speeds

• Only solution is to parallelize on large clusters 

• Wide use in both enterprises and web industry

This slide is taken from CME 323 “Distributed Algorithms and Optimization” at Stanford, 2020 Spring



• Spark is the most popular, others: Hadoop, Storm, Flink …

• Clean API in JAVA, Scala, Python and R

• Built in cloud by service providers, e.g. Google and Amazon

Computational Frameworks



• Google connects it with Bigquery API

• Scalability solution for enterprise users

• Data scientists only need to focus on business insights, not on 
hardware architecture

Flowchart: “Apache Spark BigQuery Connector — Optimization tips & example Jupyter Notebooks”. 2020 May, Medium



• A fixed communication cost is incurred every time the master 
communicates with workers

• The cost depends on 

• Bandwidth

• Message size

• Latency of each machine 

• synchronization barrier


• Number of workers k

Communication cost: a fundamental issue



Challenges for Statistical Methodology 

• Computation involving entire data 
typically requires at least one 
communication

• Inference like MCMC or bootstrap 
typically requires hundreds or thousands 
of communications

• How to maximize the parallelism while 
preserving statistical accuracy?

• High dimensional statistical 
inference?



Contributions

• Theoretically valid for HD sparse GLMs

• Utilize  penalty to enforce sparsity 

• Lower bound on the number of the communication rounds between 
master and workers that warrants statistical accuracy 

• Proposed a new and efficient distributed cross-validation for tuning

• Validated with simulation and real dataset

ℓ1

 We propose a distributed bootstrap inference……



Global loss: 

ℒN(θ) =
1
k

k

∑
j=1

ℒj(θ)

Distributed loss
Local loss: 


ℒj(θ) =
1
n

n

∑
i=1

ℒ(θ; Zij), j = 1,⋯, k

•  : data  in  worker node, i.i.d. in 


•  twice differentiable w.r.t. ,  

• True parameter: 


 is a sparse vector, 

Zij i j i, j
ℒ : θ ∈ ℝd d > n

θ* ∥θ*∥0 = s*

θ* = arg min
θ

ℒ*(θ), where ℒ*(θ) = EZ[ℒ(θ; Z)]



• Testing high dimensional unknown 


• Union of individual confidence intervals would lead to too many 
rejections, i.e. can’t control the family-wise error rate (FWER: the 
probability of falsely rejecting at least one hypothesis under )


• Instead, we consider simultaneous testing, i.e. we reject whenever 
, where  is the quantile of :

H0 : θ* = θ0

H0

N( ̂θl − θ0,l) > c(α) c(α) ̂T

Simultaneous confidence set

c(α) := inf{t ∈ ℝ : P( ̂T ≤ t) ≥ α}
̂T = ∥ N( ̂θ − θ0)∥∞



• The de-biased Lasso:


where  is the Lasso estimator,  is a surrogate for inverse Hessian


•  is  asymptotic Gaussian (many papers, e.g. van de Geer et al. 
2014, Zhang and Zhang 2014, Javanmard & Montanari 2014…)


• Bootstrap estimator  has been studied by many, e.g. Zhang and 
Cheng (2017)


• How to compute ,  and perform bootstrap distributedly?

̂θLasso Θ̂
̂θ N

̂c(α)

̂θLasso Θ̂

Review: Non-distributed, small data setting
c(α) := inf{t ∈ ℝ : P( ̂T ≤ t) ≥ α} ̂T = ∥ N( ̂θ − θ0)∥∞

̂θ = ̂θLasso − Θ̂∇ℒN( ̂θLasso)



Distributed de-biased Lasso

# Initial estimator: obtained by data in master only
# surrogate Hessian: only use the master node

to compute

# : number of communication roundsτ

# de-biased step

# Iteratively improving the estimator using Communication-efficient surrogate learning 

(CSL, Jordan et al. 2019, Wang et al. 2017) 




Multiplier bootstrap: classical 
• Need to bootstrap the distribution of  

• If  is sufficiently large, , and the de-biased  satisfies


 where the gradients are centered


• Classical multiplier bootstrap of :  i.i.d. ,


       


   , 

̂T = ∥ N( ̂θ − θ*)∥∞

τ ̂θ(τ−1) ≈ θ0
̂θ(τ)

̂T ε(b)
ij 𝒩(0,1)

̂T (b) =
1

k
Θ̃

k

∑
j=1

n
n

∑
i=1

ε(b)
ij ( ̂gij − ḡ)

∞
̂gij = ∇ℒ( ̂θ; Zij) ḡ = average( ̂gij)

N( ̂θ(τ) − θ*) ≈ −
1

k
Θ̃

k

∑
j=1

n ∇ℒj(θ*; Zij)



Distributed bootstrap: -gradk
• Classical multiplier bootstrap requires many communications — 
the same number as the bootstrap samples (in hundreds)

• For remedy, in YCC (2020, ICML), we proposed the -grad bootstrap:


 where , and  


• Simulate -grad samples , set  to be its 
empirical  quantile

k

g(τ−1)
j =

n

∑
i=1

∇ℒ(θ(τ−1); Zij) ḡ(τ−1) = avg(g(τ−1)
j )

k {W(1), ⋯, W(B)} ̂c(α)
1 − α

W(b) =
1

k
Θ̃

k

∑
j=1

ε(b)
j n (g(τ−1)

j − ḡ(τ−1))
de-mean



Distributed bootstrap:  grad n + k − 1
• The -grad is inaccurate when  is too small due to degenerate 
variance (like sample variance is inaccurate when  is small!)

• For remedy, we propose the -grad bootstrap:


• Set  by the  quantile of samples 

k k
n

n + k − 1

̂c(α) 1 − α {W̃ (1), ⋯, W̃ (B)}

W̃ (b) =
1

k
Θ̃(

n

∑
i=1

ε(b)
1i (g(τ−1)

i1 − ḡ(τ−1)) +
k

∑
j=2

ε(b)
j n(g(τ−1)

j − ḡ(τ−1)))



Cross-validation for model tuning
• Classical CV is very computationally demanding

# partition data into K shares

# K-1 shares as train, 1 share as test

# master node gradients
# worder node gradients

# gradient corrections

followed by CSL

# the test loss used for selecting lambda



Theoretical guarantees
• Goal: accurately control the FWER, i.e. under the null





• What is the minimal number of communication rounds  for this?

• Critically depend on the interplay between

• number of workers:  


• max sparsity level  of  and inverse Hessian (but not the nominal 
dimensionality  !)


• We will obtain guarantees for least square and generalized linear 
models, e.g. logistic regression

sup
α∈(0,1)

P(T ≥ ̂c(α)) − α → 0, as d, N → ∞

τmin

k
s̄ θ

d



• Greater local sample size  
requires less 

• Greater number of workers  
needs greater 

• Higher  also requires a 
higher 

• More complicated model like 
GLM requires a greater 

• -grad requires a 
smaller 

n
τmin

k
τmin

s̄
τmin

τmin
n + k − 1

τmin



Simulation: coverage = 1-FWER, LM, Toeplitz cov

• -grad slightly over 
covers; 
grad is more 
accurate

• Efficiency:  is 
close to , the 
true quantile

• larger  reduces 
performance, but a 
greater  helps

k
n + k − 1

̂c(α)
c(α)

k

τ



Simulation: coverage = 1-FWER, GLM, Toeplitz cov

• Similar patterns as 
the LM, but more 
variations when 
model is less sparse



Simulation: coverage = 1-FWER, LM, constant corr

• Similar patterns as 
the Toeplitz design. 
The only notable 
difference is  is 
greater for larger 

̂c(α)
k



Simulation: coverage = 1-FWER, GLM, constant corr

• When the model is 
not sparse, 

-grad 
need more 
iterations, i.e. a 
higher 

n + k − 1

τ



Semi-synthetic data
• US Airline On-time Performance data: public, 1987-2008

• Response: flight delay time (binary)

• Predictors: mostly categorical - year, month, DayOfWeek, 
DepTime, ArrTime, Carrier, Origin, Destination

• 113.9 million, 230 predictors after making dummy 
variables

• Pre-select 4 predictors of significance by  test, and 1 intercept

• Form a new design matrix: synthesize  fake 

 predictors, and combine them with the 5 real 
predictors

N =

t
d − 5

𝒩(0,Toeplized−5)



Variable screening: can our method correctly identify the 5 
real predictors?

• False positive: only 
1 for small ; no 
false positive for 
larger 

• True positive: all 
four variables

τ

τ



• The four significant 
predictors are year 
2001—2004

• Coefficient of the 
four years are 
significantly negative 
— after the 911 
attack, delays 
reduced due to 
reduced air traffic 
and new regulation 
to relieve airport 
congestion and 
delay



Future research: Scalable causal inference

• Fundamental problem of 
causal inference (Rubin 1974):  
can’t observe the “untreated 
outcomes” of treated units


• To measure the treatment 
effect, one needs to 
synthesize the untreated 
outcomes of the treated 
using, e.g. the control units


• Challenge: in industrial level 
data, control/treated units are 
very large (possibly in billions)



Thank you!
https://arxiv.org/abs/2102.10080 


