
github.com/skchao74/Distributed-bootstrap

Distributed Bootstrap for Simultaneous
Inference Under High Dimensionality

Shih-Kang Chao
University of Missouri

Yang Yu

Purdue University &

Facebook

Guang Cheng

Purdue University

• Data growing faster than processing speeds

• Only solution is to parallelize on large clusters

• Wide use in both enterprises and web industry

This slide is taken from CME 323 “Distributed Algorithms and Optimization” at Stanford, 2020 Spring

• Spark is the most popular, others: Hadoop, Storm, Flink …

• Clean API in JAVA, Scala, Python and R

• Built in cloud by service providers, e.g. Google and Amazon

Computational Frameworks

• Google connects it with Bigquery API

• Scalability solution for enterprise users

• Data scientists only need to focus on business insights, not on
hardware architecture

Flowchart: “Apache Spark BigQuery Connector — Optimization tips & example Jupyter Notebooks”. 2020 May, Medium

• A fixed communication cost is incurred every time the master
communicates with workers

• The cost depends on

• Bandwidth

• Message size

• Latency of each machine

• synchronization barrier

• Number of workers k

Communication cost: a fundamental issue

Challenges for Statistical Methodology

• Computation involving entire data
typically requires at least one
communication

• Inference like MCMC or bootstrap
typically requires hundreds or thousands
of communications

• How to maximize the parallelism while
preserving statistical accuracy?

• High dimensional statistical
inference?

Contributions

• Theoretically valid for HD sparse GLMs

• Utilize penalty to enforce sparsity

• Lower bound on the number of the communication rounds between
master and workers that warrants statistical accuracy

• Proposed a new and efficient distributed cross-validation for tuning

• Validated with simulation and real dataset

ℓ1

 We propose a distributed bootstrap inference……

Global loss:

ℒN(θ) =
1
k

k

∑
j=1

ℒj(θ)

Distributed loss
Local loss:

ℒj(θ) =
1
n

n

∑
i=1

ℒ(θ; Zij), j = 1,⋯, k

• : data in worker node, i.i.d. in

• twice differentiable w.r.t. ,

• True parameter:

 is a sparse vector,

Zij i j i, j
ℒ : θ ∈ ℝd d > n

θ* ∥θ*∥0 = s*

θ* = arg min
θ

ℒ*(θ), where ℒ*(θ) = EZ[ℒ(θ; Z)]

• Testing high dimensional unknown

• Union of individual confidence intervals would lead to too many
rejections, i.e. can’t control the family-wise error rate (FWER: the
probability of falsely rejecting at least one hypothesis under)

• Instead, we consider simultaneous testing, i.e. we reject whenever
, where is the quantile of :

H0 : θ* = θ0

H0

N(̂θl − θ0,l) > c(α) c(α) ̂T

Simultaneous confidence set

c(α) := inf{t ∈ ℝ : P(̂T ≤ t) ≥ α}
̂T = ∥ N(̂θ − θ0)∥∞

• The de-biased Lasso:

where is the Lasso estimator, is a surrogate for inverse Hessian

• is asymptotic Gaussian (many papers, e.g. van de Geer et al.
2014, Zhang and Zhang 2014, Javanmard & Montanari 2014…)

• Bootstrap estimator has been studied by many, e.g. Zhang and
Cheng (2017)

• How to compute , and perform bootstrap distributedly?

̂θLasso Θ̂
̂θ N

̂c(α)

̂θLasso Θ̂

Review: Non-distributed, small data setting
c(α) := inf{t ∈ ℝ : P(̂T ≤ t) ≥ α} ̂T = ∥ N(̂θ − θ0)∥∞

̂θ = ̂θLasso − Θ̂∇ℒN(̂θLasso)

Distributed de-biased Lasso

Initial estimator: obtained by data in master only
surrogate Hessian: only use the master node

to compute

: number of communication roundsτ

de-biased step

Iteratively improving the estimator using Communication-efficient surrogate learning

(CSL, Jordan et al. 2019, Wang et al. 2017)

Multiplier bootstrap: classical
• Need to bootstrap the distribution of

• If is sufficiently large, , and the de-biased satisfies

 where the gradients are centered

• Classical multiplier bootstrap of : i.i.d. ,

 ,

̂T = ∥ N(̂θ − θ*)∥∞

τ ̂θ(τ−1) ≈ θ0
̂θ(τ)

̂T ε(b)
ij 𝒩(0,1)

̂T (b) =
1

k
Θ̃

k

∑
j=1

n
n

∑
i=1

ε(b)
ij (̂gij − ḡ)

∞
̂gij = ∇ℒ(̂θ; Zij) ḡ = average(̂gij)

N(̂θ(τ) − θ*) ≈ −
1

k
Θ̃

k

∑
j=1

n ∇ℒj(θ*; Zij)

Distributed bootstrap: -gradk
• Classical multiplier bootstrap requires many communications —
the same number as the bootstrap samples (in hundreds)

• For remedy, in YCC (2020, ICML), we proposed the -grad bootstrap:

 where , and

• Simulate -grad samples , set to be its
empirical quantile

k

g(τ−1)
j =

n

∑
i=1

∇ℒ(θ(τ−1); Zij) ḡ(τ−1) = avg(g(τ−1)
j)

k {W(1), ⋯, W(B)} ̂c(α)
1 − α

W(b) =
1

k
Θ̃

k

∑
j=1

ε(b)
j n (g(τ−1)

j − ḡ(τ−1))
de-mean

Distributed bootstrap: grad n + k − 1
• The -grad is inaccurate when is too small due to degenerate
variance (like sample variance is inaccurate when is small!)

• For remedy, we propose the -grad bootstrap:

• Set by the quantile of samples

k k
n

n + k − 1

̂c(α) 1 − α {W̃ (1), ⋯, W̃ (B)}

W̃ (b) =
1

k
Θ̃(

n

∑
i=1

ε(b)
1i (g(τ−1)

i1 − ḡ(τ−1)) +
k

∑
j=2

ε(b)
j n(g(τ−1)

j − ḡ(τ−1)))

Cross-validation for model tuning
• Classical CV is very computationally demanding

partition data into K shares

K-1 shares as train, 1 share as test

master node gradients
worder node gradients

gradient corrections

followed by CSL

the test loss used for selecting lambda

Theoretical guarantees
• Goal: accurately control the FWER, i.e. under the null

• What is the minimal number of communication rounds for this?

• Critically depend on the interplay between

• number of workers:

• max sparsity level of and inverse Hessian (but not the nominal
dimensionality !)

• We will obtain guarantees for least square and generalized linear
models, e.g. logistic regression

sup
α∈(0,1)

P(T ≥ ̂c(α)) − α → 0, as d, N → ∞

τmin

k
s̄ θ

d

• Greater local sample size
requires less

• Greater number of workers
needs greater

• Higher also requires a
higher

• More complicated model like
GLM requires a greater

• -grad requires a
smaller

n
τmin

k
τmin

s̄
τmin

τmin
n + k − 1

τmin

Simulation: coverage = 1-FWER, LM, Toeplitz cov

• -grad slightly over
covers;
grad is more
accurate

• Efficiency: is
close to , the
true quantile

• larger reduces
performance, but a
greater helps

k
n + k − 1

̂c(α)
c(α)

k

τ

Simulation: coverage = 1-FWER, GLM, Toeplitz cov

• Similar patterns as
the LM, but more
variations when
model is less sparse

Simulation: coverage = 1-FWER, LM, constant corr

• Similar patterns as
the Toeplitz design.
The only notable
difference is is
greater for larger

̂c(α)
k

Simulation: coverage = 1-FWER, GLM, constant corr

• When the model is
not sparse,

-grad
need more
iterations, i.e. a
higher

n + k − 1

τ

Semi-synthetic data
• US Airline On-time Performance data: public, 1987-2008

• Response: flight delay time (binary)

• Predictors: mostly categorical - year, month, DayOfWeek,
DepTime, ArrTime, Carrier, Origin, Destination

• 113.9 million, 230 predictors after making dummy
variables

• Pre-select 4 predictors of significance by test, and 1 intercept

• Form a new design matrix: synthesize fake

 predictors, and combine them with the 5 real
predictors

N =

t
d − 5

𝒩(0,Toeplized−5)

Variable screening: can our method correctly identify the 5
real predictors?

• False positive: only
1 for small ; no
false positive for
larger

• True positive: all
four variables

τ

τ

• The four significant
predictors are year
2001—2004

• Coefficient of the
four years are
significantly negative
— after the 911
attack, delays
reduced due to
reduced air traffic
and new regulation
to relieve airport
congestion and
delay

Future research: Scalable causal inference

• Fundamental problem of
causal inference (Rubin 1974):
can’t observe the “untreated
outcomes” of treated units

• To measure the treatment
effect, one needs to
synthesize the untreated
outcomes of the treated
using, e.g. the control units

• Challenge: in industrial level
data, control/treated units are
very large (possibly in billions)

Thank you!
https://arxiv.org/abs/2102.10080

