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- Data growing faster than processing speeds
 Only solution is to parallelize on large clusters
- Wide use in both enterprises and web industry

This slide is taken from CME 323 “Distributed Algorithms and Optimization” at Stanford, 2020 Spring



Computational Frameworks

- Spark is the most popular, others: Hadoop, Storm, Flink ...

* Clean APl in JAVA, Scala, Python and R

» Built in cloud by service providers, e.g. Google and Amazon

200+ developers, 50+ companies contributing
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- Google connects it with Bigquery API
- Scalability solution for enterprise users

« Data scientists only need to focus on business insights, not on
hardware architecture
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Flowchart: “Apache Spark BigQuery Connector — Optimization tips & example Jupyter Notebooks”. 2020 May, Medium



Communication cost: a fundamental issue

- A fixed communication cost is incurred every time the master
communicates with workers

* The cost depends on Master M,
- Bandwidth
- Message size

- Latency of each machine ”\//‘ \’I\\

* synchronization barrier Worker M, Worker M
k

« Number of workers k Worker M,



Challenges for Statistical Methodology

- Computation involving entire data
typically requires at least one
communication

Master M,

* Inference like MCMC or bootstrap
typically requires hundreds or thousands ly / \
of communications /‘ \,/\
- How tq maximize the parallelism while . - M, Worker M,
preserving statistical accuracy?
Worker M,

- High dimensional statistical
inference?



Contributions

We propose a distributed bootstrap inference......

 Theoretically valid for HD sparse GLMs
« Utilize | penalty to enforce sparsity

* Lower bound on the number of the communication rounds between
master and workers that warrants statistical accuracy

* Proposed a new and efficient distributed cross-validation for tuning
- Validated with simulation and real dataset



Distributed loss

Global loss: Local loss:

] < 1 &
I =— Y L0 2= ~ X L0:Z).j = 1+ k
i=1

j=1
+ Z;;: data 1 in j worker node, i.i.d. in i,

. & : twice differentiable w.rt. 0 € R4 d > n
* True parameter:

0* = arg min £*(0), where &*(0) = E;[Z(0;2)]
0

0 is a sparse vector, |6, = s*



Simultaneous confidence set

« Testing high dimensional unknown H,, : 6 = 0,

» Union of individual confidence intervals would lead to too many
rejections, i.e. can’t control the family-wise error rate (FWER: the

probability of falsely rejecting at least one hypothesis under H)

* Instead, we consider simultaneous testing, i.e. we rejggt whenever
\/]Tf (6, — 6, > c(a), where c(a) is the quantile of T

c(@):=inf{t e R : P(T <) > a)
T = IWVNO -6l



Review: Non-distributed, small data setting
c@)=infteR:P(T<H>a} T=I|vNO-6l.

 The de-biased Lasso:
0= gLasso -OVZ N(HLCZSSO)

where 0, . is the Lasso estimator, ® is a surrogate for inverse Hessian

«Qis\/N asymptotic Gaussian (many papers, e.g. van de Geer et al.
2014, Zhang and Zhang 2014, Javanmard & Montanari 2014...)

» Bootstrap estimator ¢(a) has been studied by many, e.g. Zhang and
Cheng (2017)

« How to compute éLaSSO, ©® and perform bootstrap distributedly?



Distributed de-biased Lasso

Algorithm 1 k-grad/n+k-1-grad with de-biased ¢,-CSL estimator

1: 0O « argmin, £,(6) + A?||0||; at My # Initial estimator: obtained by data in master only

2. Compute o by running Node(V2£1(5(°)), {)\z}?zl) at M, fos;;:;)gi’i Hessian: only use the master node

3: fort=1,...,7 do # 7: number of communication rounds
4 FLNOEY) kLR VL (0¢Y) at M,
5: if t <7 then

6: 0 < argmin, £,(0) — 07 (VL (6¢-D) — VLN(5<t—1>)) +2XO0]1 at M,
# Iteratively improving the estimator using Communication-efficient surrogate learning

nooelse (CSL, Jordan et al. 2019, Wang et al. 2017)
8: 0 9D —OVLN(07Y) at My 4 de-biased step
9: end if
10: end for

11: Run DistBoots(‘k-grad’ or ‘n+k-1-grad’,d = (), {g; = vcj(%—l)) b
12: © =0) at M;




Multiplier bootstrap: classical

- Need to bootstrap the distribution of T = ||\/N(é )| &
- If 7 is sufficiently large, oD ~ 0,, and the de-biased 0 satisfies

VN@D - %) - ﬁé Y VAV @iz
=1

where the gradients are centered
. Classical multiplier bootstrap of T 8 )iid. A(0,1),

70 — |2 Z\/‘Z ) (3, - 2)

§;i=VZ 0; Z), 8§ = average(gl-j)




Distributed bootstrap: k-grad

» Classical multiplier bootstrap requires many communications —
the same number as the bootstrap samples (in hundreds)

- For remedy, in YCC (2020, ICML), we proposed the k-grad bootstrap:

1 . &
— 0 ey /n g_(r—l)_g(f—l)
N Z Vn \<J )

n de-mean

where gj(f_l) = Z VO?(Q(T_D;ZU-), and gD = avg(gj(f_l))
i=1

- Simulate k-grad samples { WD, .... W set &(a) to be its

empirical 1 — a quantile

Wb —




Distributed bootstrap: n + kK — 1 grad

- The k-grad is inaccurate when k is too small due to degenerate
variance (like sample variance is inaccurate when 7 is small!)

- For remedy, we propose the n + k — 1-grad bootstrap:

n

— 1 . N - Y e
w® — ﬁ@< 81(?)<gi(lf 1) _ g( 1)) + Z %(b)\/; (gj(f 1) _ g( 1)>>
I Jj=2

- Set ¢(a) by the 1 — a quantile of samples {W(l), Sh W(B)}




Cross-validation for model tuning

* Classical CV is very computationally demanding
Algorithm 2 Distributed K-fold cross-validation for t-step CSL

Require: (t — 1)-step CSL estimate 5(’5_1), set A of candidate values for A®), partition

of master data Z = U§{=1 Z,, partition of worker gradients G = Uf:1 G, # partition data into K shares
1: forg=1,...,K do
2 Zirain < Uy Zr; Ztest < 24
8 Girain & U, Ori Giest < Gy
4 Gitrain < AV8zez, . <Vﬁ(5(t‘”; Z)); Gitest < AVE ez, (Vﬁ(g(t‘”; Z)) # master node gradients

5 Grrain < AVBe(g) truintGurain (9); Grest < AV8oe(g yugie (9) # worder node gradients
6: for A\ € A; do

# K-1 shares as train, 1 share as test

€ B« argming Avg ez, (L(6;2)) = 07 (91rain — Girain) + MOl # gradient corrections
8: Loss(A, q) < Avgyez, (E(ﬁ; Z)) — BT (g1,test — Grest) followed by CSL
9: end for

10: end for

11: Return A®) = argmin,c, K~ 31, Loss(\,q) # the test loss used for selecting lambda




Theoretical guarantees

- Goal: accurately control the FWER, i.e. under the null
sup |P(T > c(a)) —a| = 0,asd, N = o0
ae(0,1)
« What is the minimal number of communication rounds 7, .. for this?
» Critically depend on the interplay between
» number of workers: k

« max sparsity level § of @ and inverse Hessian (but not the nominal
dimensionality d !)

* We will obtain guarantees for least square and generalized linear
models, e.g. logistic regression
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 Greater local sample size n
requires less 7.,

- Greater number of workers k
needs greater 7.

« Higher s also requires a
highert, .

« More complicated model like
GLM requires a greater 7. .

- n + k — 1-grad requires a
smaller 7,



Simulation: coverage = 1-FWER, LM, Toeplitz cov

; ‘ Width
Coverage k-grad, s = 22 k-grad(So = 2 GracleWidth

100- 88— o T oo o -2.30 - k-grad slightly over

075 = 122 73 covers; n + k — 1

e N £ i W W grad is more

0.25 - — o "0.58 accurate

R s 4 5 s 0 <Efficiency: &) is
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Simulation: coverage = 1-FWER, GLM, Toeplitz cov

Coverage k-grad, sg =21 k-grad, so = 23 %
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Simulation: coverage = 1-FWER, LM, constant corr

Coverage
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k-grad, sp = 22 k-grad, so = 2* Oraclewidth
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- Similar patterns as
the Toeplitz design.
The only notable

difference is ¢() is
greater for larger k



Simulation: coverage = 1-FWER, GLM, constant corr
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Semi-synthetic data

- US Airline On-time Performance data: public, 1987-2008

- Response: flight delay time (binary)

* Predictors: mostly categorical - year, month, DayOfWeek,
DepTime, ArrTime, Carrier, Origin, Destination

- N = 113.9 million, 230 predictors after making dummy
variables

 Pre-select 4 predictors of significance by 7 test, and 1 intercept

- Form a new design matrix: synthesize d — 5 fake
(0, Toeplize,, ) predictors, and combine them with the 5 real
predictors



Variable screening: can our method correctly identify the 5
real predictors?
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* False positive: only

1 for small 7; no
false positive for
d =1000, relevant

d =200, spurious Iarger 4
d =500, spurious * True positive: all

d= 1000’ Spurious fOUI’ VarlableS
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* The four significant
predictors are year
2001 —2004

- Coefficient of the
four years are
significantly negative
— after the 911
attack, delays
reduced due to
reduced air traffic
and new regulation
to relieve airport
congestion and
delay

Year 2001 -

Year 2002 -

Year 2003 -

Year 2004 -
—-0.5 -0.4 —0.3 —0.2 -0.1 0.0



Future research: Scalable causal inference

Treatment - Control

Conformal confidence interval on MicroSynth

185 190 195 200 205 210

Time

 Fundamental problem of
causal inference (Rubin 1974):
can’t observe the “untreated
outcomes” of treated units

 To measure the treatment
effect, one needs to
synthesize the untreated
outcomes of the treated
using, e.g. the control units

« Challenge: in industrial level
data, control/treated units are
very large (possibly in billions)



Thank you!
https://arxiv.org/abs/2102.10080
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