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Abstract

This paper considers the construction of prediction intervals for future observations in high

dimensional regression models. We propose a new approach to evaluate the uncertainty for

estimating the mean parameter based on the widely-used penalization/regularization methods.

The proposed method is then applied to construct prediction intervals for sparse linear models

as well as sparse additive models. We establish the asymptotic normality of the estimator for

the mean parameter and the asymptotic coverage probability of the prediction intervals. The

theoretical properties of the proposed methods are verified by extensive simulation studies and

real data analysis.

Keyword: Asymptotic normality, Prediction, Lasso, SCAD, Dantzig selector, Sparse additive
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1 Introduction

In many modern research areas including genomics, biomedical imaging, signal processing, epidemi-

ological studies, and high frequency finance, a large amount of variables is often collected, which

poses new challenges for statistical analysis. During the past decade, such high dimensional data

have been extensively studied, and a variety of penalization/regularization methods is proposed.

In particular, for the Lasso estimator (Tibshirani, 1996), the rate of convergence and the variable

selection consistency has been studied by Bickel et al. (2009); Zhang (2009); Negahban et al. (2012);

Meinshausen and Bühlmann (2006); Zhao and Yu (2006); Wainwright (2009), among others. More-

over, the nonconvex penalized estimators, including MCP (Zhang, 2010a), SCAD (Fan and Li,

2001), and capped-L1 penalty (Zhang, 2010b), are also proposed. The estimation consistency and

oracle properties of the nonconvex estimators are established by Fan et al. (2012b); Fan and Lv

(2011); Loh and Wainwright (2013); Wang et al. (2013); Zhang (2013), among others. To relax the

∗Ladislaus von Bortkiewicz Chair of Statistics, C.A.S.E. - Center for applied Statistics and Economics, Humboldt-

Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany; email: shih-kang.chao@hu-berlin.de.
†Department of Operations Research Research and Financial Engineering, Princeton University, Princeton, NJ

08544, USA; e-mail: yning@princeton.edu.
‡Department of Operations Research Research and Financial Engineering, Princeton University, Princeton, NJ

08544, USA; e-mail: hanliu@princeton.edu.

1



linearity assumption in the linear model, more flexible models such as sparse additive models have

been proposed and studied by Meier et al. (2009); Ravikumar et al. (2009); Huang et al. (2010);

Fan et al. (2011); Raskutti et al. (2012), among others. Recently, The problem of constructing

confidence intervals for the low dimensional component of high dimensional parameters has been

considered by Zhang and Zhang (2014); van de Geer et al. (2014); Ning and Liu (2014); Javanmard

and Montanari (2013); Belloni et al. (2013).

In regression analysis for low dimensional data, prediction of future observations based on

the observed data and its uncertainty assessment are fundamental problems and have been well

explained in many (under)graduate-level textbooks; see Faraway (2014) and Graybill (2000). How-

ever, the solution to such problems remains largely unknown in high dimensional models. To close

this gap, this paper considers how to construct prediction intervals for two fundamental models:

(1) sparse linear models and (2) sparse additive models. For the illustration purpose, assume that

the data {Yi,Xi}ni=1 are i.i.d. and Yi given Xi is generated from a linear model Yi = XT
i β
∗ + εi,

where εi ∼ N(0, σ2), and β∗ is a d dimensional unknown parameter. Our goal is to predict the

value of Y corresponding to a new covariate X = x∗, when d is much larger than n. As shown in

Faraway (2014), the problem of constructing prediction intervals for Y is equivalent to constructing

the confidence intervals for the mean parameter x∗>β∗.

This article has two main contributions. First, we propose a new calibration method to evaluate

the uncertainty for estimating the mean parameter x∗>β∗. The proposed method can be applied for

a wide class of regularized estimators β̂, including nonconvex estimators, provided the convergence

rate of β̂ to β∗ is sufficiently fast. In addition, our method can applied to more sophisticated

nonparametric models such as sparse additive models. This further extends the scope of our

method. Second, we establish the asymptotic normality for an estimator of the mean parameter

x∗>β∗. We prove this result under very mild conditions, which only needs that β∗ is sparse,

Σ = E(XiX
T
i ) has bounded condition number and Xi satisfies some sub-Gaussian type condition.

In particular, we highlight that our method does not need (1) the sparsity of the new covariate x∗;

(2) the irrepresentable or the minimal signal strength condition for variable selection consistency;

(3) the sparsity of Σ−1. The similar asymptotic results are also established for the sparse additive

models.

Compared with the prediction intervals in low dimensional linear models (Faraway, 2014; Gray-

bill, 2000), the calibration step is new and essential. The reason is that the penalized estimator

such as Lasso no longer possess a tractable asymptotic distribution (Knight and Fu, 2000), which

makes the prediction intervals considered in Faraway (2014); Graybill (2000) infeasible. In the

discussion to Lockhart et al. (2014), Wasserman (2014) briefly described the use of conformal pre-

diction interval (Vovk et al., 2005, 2009). For low dimensional models, Lei et al. (2014) and Lei

and Wasserman (2014) extended the conformal inference, and established the properties of the

conformal prediction intervals. However, theoretical properties for high dimensional models do not

exist for this approach. In high dimensional linear models, a de-biased approach is proposed by

Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard and Montanari (2013) to establish

the element-wise asymptotic normality of some estimator β̃. Compared to these works, our method

has the following three advantages: (1) Their results do not imply the asymptotic normality of x∗β̃,
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unless the new covariate x∗ is sparse which is very restrictive in practice. In contrast, we do not

need x∗ to be sparse. (2) To derive the de-biased estimator β̃, one needs to estimate the inverse of

the d× d matrix Σ, which is computationally intensive for large d. In contrast, our proposed cali-

bration method only requires to estimate a d dimensional vector, which shows our computational

advantage. (3) The de-biased estimator has not been theoretically justified for sparse additive mod-

els. This papers for the first time provides rigorous theoretical results for confidence and prediction

intervals.

The paper is organized as follows. Section 2 presents the prediction intervals for linear models.

In Section 3 we consider the prediction intervals for the SParse Additive Model (SPAM). The

simulation results and real data analysis are presented in Sections 4 and 5, respectively. Section 6

contains summary and discussions. The proofs are deferred to Appendices.

1.1 Notations

The following notations are adopted throughout this paper. For v = (v1, ..., vd)
T ∈ Rd, and

1 ≤ q ≤ ∞, we define ‖v‖q = (
∑d

i=1 |vi|q)1/q, ‖v‖0 = |supp(v)|, where supp(v) = {j : vj 6= 0} and

|A| is the cardinality of a set A. Denote ‖v‖∞ = max1≤i≤d |vi|. For a matrix M = (Mij), let ‖M‖2,

‖M‖∞ be the spectral, elementwise supreme norms of M. Let Sc denotes the complement of the

set S. We use K, C to denote generic constants independent of n in our paper.

Definition 1.1 (Sub-exponential variable and sub-exponential norm). A random variable X is

called sub-exponential if there exists some positive constant K1 such that P(|X| > t) ≤ exp(1 −
t/K1) for all t ≥ 0. The sub-exponential norm of X is defined as ‖X‖ψ1 = supp≥1 p

−1(E|X|p)1/p.

Definition 1.2 (Sub-Gaussian variable and sub-Gaussian norm). A random variable X is called

sub-Gaussian if there exists some positive constant K2 such that P(|X| > t) ≤ exp(1− t2/K2
2 ) for

all t ≥ 0. The sub-Gaussian norm of X is defined as ‖X‖ψ2 = supp≥1 p
−1/2(E|X|p)1/p.

2 Prediction Intervals for Linear Models

Assume that the response Yi given the covariate Xi = (Xi1, ..., Xid) is independently generated

from the linear model,

Yi = XT
i β
∗ + εi, where εi ∼ N(0, σ2), (2.1)

and β∗ is a d dimensional unknown parameter. Our goal is to predict the value of Y corresponding

to a new covariate X = x∗, and construct prediction intervals for Y .

As β∗ is unknown, one needs to estimate β∗ to construct prediction intervals. Let `(β) =

(2n)−1‖Y −Xβ‖22 denote the least square loss, where Y = (Y1, ..., Yn) and X = (X1, ...,Xn)T is a

n×d design matrix. In high dimensional regime, β∗ is usually estimated by the following penalized

M-estimator

β̂ = argmin
β∈Rd

`(β) +
d∑
j=1

pλ(βj),
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where λ ≥ 0 is a tuning parameter and pλ(·) is a generic penalty function, including the `1 penalty

pλ(u) = λ · |u|, and

SCAD penalty (Fan and Li, 2001): pλ(u) = λ

∫ |u|
0

{
I(z ≤ λ) +

(aλ− z)+

(a− 1)λ
I(z > λ)

}
dz,

MCP penalty (Zhang, 2010a): pλ(u) = λ

∫ |u|
0

(
1− z

λb

)
+
dz,

for some constants a, b. Alternative estimators include the post-Lasso estimator (Belloni and Cher-

nozhukov, 2013) and the Dantzig selector (Candes and Tao, 2007).

To construct prediction intervals, we first consider how to construct confidence intervals for the

mean parameter E(Y |X = x∗) = x∗>β∗. While x∗>β̂ is consistent for x∗>β∗, the distribution of

x∗>β̂ is intractable due to regularization. Hence, a calibration is needed to construct convenient

confidence intervals for x∗>β∗. Denote Σ̂ = n−1
∑n

i=1XiX
T
i . We propose the following estimator

of x∗>β∗,

Sx(β̂) = x∗>β̂ − 1

n

n∑
i=1

ŵTXi(Yi −XT
i β̂),

where ŵ is obtained from

ŵ = argmin
w∈Rd

wT Σ̂w, subject to
∥∥x∗ + Σ̂w

∥∥
∞ ≤ λ

′, (2.2)

where λ′ is an additional tuning parameter. The purpose of the calibration is to modify x∗>β̂ such

that the estimator Sx(β̂) will satisfy the following two properties: (1) Sx(β̂) remains consistent for

x∗>β∗ and (2) Sx(β) is insensitive to the perturbation of β. The latter can be understood that

the derivative of Sx(β) with respect to β, i.e., ∂Sx(β)/∂β = x∗+ Σ̂ŵ, is sufficiently small, since it

is controlled by λ′ uniformly as specified in (2.2). Thus, the effect of estimating β in Sx(β) by the

regularized estimator β̂ is asymptotically ignorable, and this avoids the calculation of the limiting

distributions of β̂. It would be clear later that such an approach in (2.2) essentially minimizes the

width of the confidence interval and meanwhile controls the bias at the level of λ′.

Denote s∗ = ‖β∗‖0. The following Lemma establishes the asymptotic normality of Sx(β̂).

Lemma 2.1. Under the linear model assumption (2.1), if ‖β̂ − β∗‖1 = OP(s∗
√

log d/n) holds,

then we have n1/2(Sx(β̂) − x∗>β∗) = N + ξ, where N | X,x∗ ∼ N(0, σ2ŵT Σ̂ŵ), and |ξ| =

OP(λ′s∗
√

log d).

Proof. See Appendix A for a detailed proof.

To apply this Lemma, we need to ensure that (1) the conditional variance of N exists and is

bounded and (2) the magnitude of λ′ can be sufficiently small, such that ξ = oP(1). To this end, we

focus on the random design. That means X1, ...,Xn are i.i.d. In addition, we need to normalize the

new covariate x∗. Otherwise, x∗>β∗ can be arbitrarily large, as d→∞. Without loss of generality,

we assume ‖x∗‖2 = 1.

We first invoke the following lemma to show that w∗ := −Σ−1x∗, where Σ = E(XiX
T
i ), is in

the feasible set of the problem (2.2).
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Lemma 2.2. Assume that X1, ...,Xn are n i.i.d random variables with mean 0 and variance Σ.

In addition, there exist two constants Cmin and Cmax, such that 0 < Cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤
Cmax < ∞. Assume that ‖Σ−1/2Xi‖ψ2 = C, and ‖x∗‖2 = 1. Then, with probability at least

1− 2d−3,

∥∥x∗ + Σ̂w∗
∥∥
∞ ≤ 2(1 + 2ρ1/2C2)

√
C ′′−1 log d

n
, where ρ = Cmax/Cmin,

provided 4C ′′−1 log d ≤ n, and C ′′ is a universal constant given in Lemma C.3.

Proof. See Appendix A for a detailed proof.

By this Lemma, one can take λ′ = 2(1 + 2ρ1/2C2)
√
C ′′−1 log d/n, and the feasible set in (2.2)

is non-empty. This implies that (1) the conditional variance of N in Lemma 2.1 exists and (2) ξ

in Lemma 2.1 can be oP(1). Combining Lemma 2.1 and Lemma 2.2, we can establish the main

theorem of this section.

Theorem 2.3. Assume that the linear model (2.1), and the conditions in Lemma 2.2 hold. If

‖β̂−β∗‖1 = OP(s∗
√

log d/n) and s∗ log d = o(n1/2) hold, then conditioning on the design X and x∗,

n1/2(Sx(β̂)−x∗>β∗) N(0, σ2ŵT Σ̂ŵ). Finally, if ‖w∗‖21
√

log d/n = O(1), then ŵT Σ̂ŵ = OP(1).

Proof. See Appendix A for a detailed proof.

If β̂ corresponds to the Lasso estimator, then the following corollary establishes the nonasymp-

totic characterization of Sx(β̂) conditional on the design variables X and x∗.

Corollary 2.4. Assume that the linear model (2.1), and the conditions in Lemma 2.2 hold. Then

n1/2(Sx(β̂) − x∗>β∗) = N + ξ, where N | X,x∗ ∼ N(0, σ2ŵT Σ̂ŵ). In addition, assume Σ̂jj = 1,

for j = 1, ..., d,

2

√
C ′′−1 log d

n
≤ 1, and 32(2C2 + 1)ρs∗

√
C ′′−1 log d

n
≤ 1/2,

where ρ = Cmax/Cmin is the condition number and C ′′ is a universal constant in Lemma C.3. Then,

with

λ = 4σ2

√
6 log d

n
, and λ′ = 2(1 + 2ρ1/2C2)

√
C ′′−1 log d

n
,

we further have ξ satisfies

|ξ| ≤ 64(1 + 2C2)ρσ2

√
6

C ′′
s∗ log d√

n
,

with probability at least 1− 4d−2 − 2d−3.

Proof. See Appendix A for a detailed proof.
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Note that Theorem 2.3 and Corollary 2.4 establish the asymptotic normality of Sx(β̂) under

very mild conditions. In particular, we only require that β∗ is sparse, Σ has bounded condition

number and Xi satisfies some sub-Gaussian type condition, which are all routine assumptions for

high dimensional models. Our results are different from the asymptotic normality based on the

oracle properties (Fan and Li, 2001). The reason is that we do not assume the minimal signal

strength of β∗ is sufficiently large, which is a necessary condition for variable selection consistency.

Unlike the confidence interval for βj based on desparsifying the Lasso estimator in van de Geer

et al. (2014), we do not assume the sparsity of Σ−1, and our Theorem 2.3 holds for a general

class of regularized estimators, including the nonconvex penalty. Although the sparsity of Σ−1 is

not needed in Javanmard and Montanari (2013), one cannot directly use the existing methods for

confidence intervals for βj to infer the mean parameter x∗>β∗. There are two reasons. First, the

error of normal approximation may accumulate very fast for estimating x∗>β∗. This is because the

desparsifying/debiased estimators of β∗ in van de Geer et al. (2014); Javanmard and Montanari

(2013) are no longer sparse. To control the estimation error of x∗>β∗ based on their methods, the

sparsity of x∗ may be needed, which is very restrictive in practice. Second, the approaches in van de

Geer et al. (2014) and Javanmard and Montanari (2013) are computationally intensive, because

they need to estimate the precision matrix Σ−1, which is either decomposed into d Lasso problems

(van de Geer et al., 2014) or d constrained optimization problems (Javanmard and Montanari, 2013).

In contrast, we only need to solve one constrained optimization problem (2.2), which demonstrates

the computational advantage of our procedure.

As an interesting special case, if x∗ = ej , where ej is a unite vector with 1 on the jth component

and 0 otherwise, then the parameter of interest x∗>β∗ reduces to βj and our method and theory

implies those in van de Geer et al. (2014); Javanmard and Montanari (2013). However, in general,

we do not require x∗ to be sparse. Thus, Theorem 2.3 is a novel contribution in high dimen-

sional inference towards understanding the asymptotic results for a nonsparse linear combination

of parameters.

To apply our method, it is crucial to estimate the variance of the model error σ2. To make our

theory hold, it is sufficient to come up with an estimator σ̂2 satisfying |σ̂2−σ2| = oP(1). In Lemma

2.5, we show that the estimator

σ̂2 = n−1
n∑
i=1

(Yi −XT
i β̂)2 (2.3)

is applicable. Similar results can be found in Greenshtein and Ritov (2004).

Lemma 2.5 (Convergence of σ̂). Under the conditions in Lemma 2.1 and σ2 > C for constant

C > 0, we have |σ̂2 − σ2| = oP(1).

Proof. See Appendix A for a detailed proof.

An estimator that we apply in our simulation studies is

σ̂2
λ̂

= n−1
n∑
i=1

(Yi −XT
i β̂λ̂)2, (2.4)
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where λ̂ is estimated from a K-fold cross-validation procedure. Some alternative estimators have

been considered in the literature. For instance, Fan et al. (2012a) proposed a two-stage refitted

cross-validation estimator, which reduces the effect of overselection of Lasso estimators. In addition,

Reid et al. (2014) compared several estimators of σ2 based on the Lasso procedure by simulations,

and they adopted the result of Homrighausen and McDonald (2013) to conclude that if ‖β∗‖1 =

o((n/ log n)1/4), then (2.4) remains consistent. Another popular method to estimate σ2 is the scaled

Lasso proposed by Sun and Zhang (2012). In particular, they developed an iterative algorithm to

solve β and σ simultaneously. They also proved the consistency of the estimator σ̂; see Sun and

Zhang (2012) for details.

Combining Theorem 2.3 and Lemma 2.5, the Slutsky’s theorem implies that conditioning on

the design X and x∗, we have

n1/2(Sx(β̂)− x∗>β∗) N(0, σ̂2ŵT Σ̂ŵ),

and therefore the prediction interval with asymptotic coverage probability (1−α) for Y correspond-

ing to X = x∗ is given by [Sx(β̂) − Φ−1(1 − α/2)V, Sx(β̂) + Φ−1(1 − α/2)V ], where Φ−1(·) is the

inverse of c.d.f of standard normal variables and

V = σ̂ + n−1/2(σ̂2ŵT Σ̂ŵ)1/2.

For reader’s convenience, the procedure to construct the high-dimensional prediction intervals for

linear models is summarized in Algorithm 1.

Algorithm 1 Calculate the prediction intervals for linear models

Require: : Loss function `(β) = (2n)−1‖Y−Xβ‖22, penalty function P (·) and tuning parameters

λ and λ′, covariates x∗, significance level 0 < α < 1.

(i) Calculate β̂ as β̂ = argminβ `(β) + Pλ(β).

(ii) Estimate ŵ by

ŵ = argmin
w∈Rd

wT Σ̂w, s.t.

∥∥∥∥x∗ +
1

n

n∑
i=1

XiX
T
i w

∥∥∥∥
∞
≤ λ′.

(iii) Calculate

Sx(β̂) = x∗>β̂ − 1

n

n∑
i=1

ŵTXi(Yi −XT
i β̂), and σ̂2 = n−1

n∑
i=1

(Yi −XT
i β̂)2.

return Prediction intervals [Sx(β̂) − Φ−1(1 − α/2)V, Sx(β̂) + Φ−1(1 − α/2)V ], where V =

σ̂ + n−1/2(σ̂2ŵT Σ̂ŵ)1/2.

3 Prediction Intervals for Sparse Additive Models (SPAM)

In this section we consider the prediction interval for sparse additive models. Assume that the

response Yi given the covariate Xi = (Xi1, ..., Xid) is independently generated from the following
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sparse additive model (Huang et al., 2010; Ravikumar et al., 2009):

Yi = µ+

d∑
j=1

fj(Xij) + εi, (3.1)

where Xij takes values in a compact interval [a, b] in which a < b are finite numbers, εi are i.i.d.

N(0, σ2), and fj : R → R are unknown functions with identifiability conditions E(fj(Xj)) = 0 for

1 ≤ j ≤ d. We assume µ = 0, fj = 0 for any j ∈ Sc where S ⊂ {1, 2, ..., d} is the support set with

s∗ = |S| � n. The nonzero fj is assumed to lie in F which is the class of functions f on [0, 1]

whose αth derivative f (α) exists and satisfies a Lipschitz condition of order γ:

|f (α)(s)− f (α)(t)| ≤ C|s− t|γ , for any s, t ∈ [a, b],

where C is a constant and k = α + γ > 0.5. Based on the construction of Schumaker (1981)

and Stone (1985), each function fj ∈ F can be approximated by an element fnj ∈ Sn so that

‖fnj − fj‖∞ = O(m−kn ) (see p. 150 of Newey (1997)), where

fnj =

mn∑
k=1

β∗jkφk(x),

and Sn is an expanding class of polynomials spanned by a set of normalized B-spline basis {φk, 1 ≤
k ≤ mn}. Let ‖f‖2 = [

∫ b
a f

2(x)dx]1/2, β∗j = (β∗j1, ..., β
∗
jmn

) and β∗ = (β∗>1 , ...,β∗>d )T . For any

x ∈ R, let Φ(x) = (φ1(x), ..., φmn(x))T . The centered basis function is

ψjk(x) = φk(x)− φ̄jk, where φ̄jk =
1

n

n∑
i=1

φk(Xij),

and we define Ψj(x) = Φ(x) − Φ̄j ∈ Rmn as the centered Φ(x) at the jth covariate where Φ̄j =

n−1
∑n

i=1 Φ(Xij). To define the design matrix, let

Zi = Z̃i − Z̄ ∈ Rdmn , where Z̃i = (Φ(Xi1)T , ...,Φ(Xid)
T )T and Z̄ =

1

n

n∑
i=1

Z̃i. (3.2)

Consequently, Zi are centered in the empirical mean
∑n

i=1Zi = 0. The design matrix is given by

Z = (Z1, ...,Zn)T ∈ Rn×dmn . Denote Ĉ = ZTZ/n, and Y = (Y1, ..., Yn)T .

For the sparse additive model, Huang et al. (2010) estimated fj(x) by f̂j(x) =
∑mn

k=1 β̂jkψjk(x),

where β̂ is obtained by the following group Lasso procedure:

β̂ = argmin
β

{
`(β) + λ

d∑
j=1

‖βj‖2
}
, where `(β) =

1

2n
‖Y − Zβ‖22. (3.3)

Here we focus on the following prediction problem. Given a new covariate x∗, we would like

to construct confidence intervals for z∗>β∗, where z∗ = (Φ(x∗1)T , ...,Φ(x∗d)
T )T . In addition, we

consider the prediction interval for Y corresponding to X = x∗. Similar to the linear regression,

for theoretical development, we assume ‖z∗‖2 = 1.
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Following the same rationale as in Section 2, to estimate z∗>β∗, we propose the following

estimator,

Sx(β̂) = z∗>β̂ − 1

n

n∑
i=1

ŵTZi(Yi −ZT
i β̂),

where ŵ is obtained from the following procedure

ŵ = argmin
w∈Rdmn

wT Ĉw, subject to
∥∥z∗ + Ĉw

∥∥
∞ ≤ λ

′, (3.4)

where λ′ is an additional tuning parameter. To establish the theoretical results, we denote the

matrix L2,1 and L2,∞ norms for a vector v ∈ Rdmn as

‖v‖2,1 =

d∑
j=1

√√√√mn∑
k=1

v2
(j−1)mn+k, ‖v‖2,∞ = max

1≤j≤d

√√√√mn∑
k=1

v2
(j−1)mn+k. (3.5)

The following conditions are assumed.

Assumption 3.1 (Gaussian Errors). The random variables ε1, ..., εn are i.i.d N(0, σ2).

Assumption 3.2 (Indentifiability). E[fj(Xj)] = 0 and fj ∈ F , j = 1, ..., d.

Assumption 3.3 (Bounded Covariates). For j = 1, ..., d, the covariate vector Xj has the support

set [a, b] and there exist constants C1 and C2 such that the probability density function gj of Xj

satisfies 0 < C1 ≤ gj(x) ≤ C2, for x ∈ [a, b].

Assumption 3.4 (Restricted Eigenvalue Conditions). There exists a constant τ such that

min
{mn(vT Ĉv)

‖v‖22
: v ∈ Rdmn\{0}, ‖vSc‖2,1 ≤ 3‖vS‖2,1

}
≥ τ, (3.6)

where S = {1 ≤ j ≤ d : fj 6= 0} is the support set and s∗ = |S|.

Assumptions 3.1–3.3 are standard for studying the theoretical results for nonparametric regres-

sions; see Huang et al. (2010). To obtain valid prediction intervals, in Assumption 3.1, we impose

the Gaussian assumption for the model error. For simplicity, we make the restricted eigenvalue

condition explicitly in Assumption 3.4. Since the Gram matrix Ĉ is constructed by the spline basis,

the magnitude of its eigenvalues shrinks to 0 as mn →∞. Hence, we rescale it by mn in (3.6). Note

that Bickel et al. (2009) showed that the type of Assumption 3.4 is implied by the sparse eigenvalue

condition. When s∗ is bounded, by Lemma 3 of Huang et al. (2010), the sparse eigenvalue condition

for the additive model holds with probability tending to 1 and therefore Assumption 3.4 holds. A

rigorous verification can be found in Proposition 4.1 of Lu et al. (2015).

Theorem 3.5. Under Assumptions 3.1, 3.2, 3.3, 3.4, then√
n

mn

(
Sx(β̂)− z∗>β∗

)
= N + ∆1 + ∆2, (3.7)
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where N | X,x∗ ∼ N(0,m−1
n σ2ŵT Ĉŵ). If ‖w∗‖21

√
log(dmn)/n = OP(mn) and

λ = 4

√
2C̄C ′′−1mn

log d

n
+ 4s∗Cφm

1/2−k
n ,

then ŵT Ĉŵ = OP(mn) and ∆1 and ∆2 satisfy

|∆1| ≤ 6s∗τ−1mn{4(2C ′′−1mn log d)1/2 + 4s∗Cφn
1/2m1/2−k

n }λ′

with probability at least 1− 2d−1 and

|∆2| = OP(s∗n1/2m−kn ),

where C ′′ a universal constant given in Lemma C.3, and Cφ is a constant satisfying supx∈[a,b] |fj(x)−
Φ(x)Tβ∗j | ≤ Cφm−kn .

Proof. See Appendix B for a detailed proof.

Theorem 3.5 is analogous to Lemma 2.1 for linear models. Note that the convergence rate of

Sx(β̂) in this theorem is slower than that in Lemma 2.1, due to the approximation error by using

the sieve spaces. To conclude that the estimator Sx(β̂) is asymptotically normal, we need to further

control ∆1. The following lemma serves this purpose.

Lemma 3.6. Assume there exist two constants Cmin and Cmax, such that 0 < m−1
n Cmin ≤

λmin(C) ≤ λmax(C) ≤ m−1
n Cmax <∞, where C = E(Z̃T Z̃/n). In addition, assume that ‖C−1/2Zi‖ψ2 =

C, for any i = 1, ..., n, and ‖z∗‖2 = 1. Then, with probability at least 1− 2(dmn)−3,

∥∥z∗ + Ĉw∗
∥∥
∞ ≤ 2(1 + 2ρ1/2C2)

√
C ′′−1 log(mnd)

n
, where ρ = Cmax/Cmin,

and w∗ = −C−1z∗, provided 4C ′′−1 log(dmn) ≤ n, and C ′′ is given in Lemma C.3.

Proof. See Appendix B for a detailed proof.

This Lemma implies that one can take

λ′ = 2(1 + 2ρ1/2C2)

√
C ′′−1

log(mnd)

n

in (3.4), such that |∆1| = OP
(
s∗
√

log(mnd)/n{m3/2
n log d+ s∗n1/2m

3/2−k
n }

)
.

In what follows, we discuss the order of mn which makes both ∆1 and ∆2 converge to 0. Notice

that the choice of mn must balance the rate of ∆1 and ∆2 as ∆1 →∞ and ∆2 → 0 as mn →∞ when

holding other parameters fixed. Suppose k > 3/2 and s∗ is fixed. Then, n1/(2k) � mn would make

∆2 converge to 0 in probability. To make ∆1 converge to 0 in probability, we need mn log d � n1/3.

Hence, ignoring the logarithmic factor of d, it is required to set n1/(2k) � mn � n1/3 to make both

∆1 and ∆2 → 0. By the bias and variance trade-off in Lemma C.1, the optimal number of basis is

given by mn � n1/(2k+1). That is, to perform the inference, we need to undersmooth to eliminate

the bias.
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Similar to the variance estimator (2.3), σ2 in the additive model can be estimated by

σ̂2 = n−1
n∑
i=1

(Yi −ZT
i β̂)2.

The following Lemma establishes the consistency of σ̂2.

Lemma 3.7 (Convergence of σ̂). Under the conditions in Theorem 3.5, we have |σ̂2−σ2| = oP(1).

Proof. See Appendix B for a detailed proof.

For practical applications, we suggest to use the estimator

σ̂2
λ̂

= n−1
n∑
i=1

(Yi −ZT
i β̂λ̂)2, (3.8)

where λ̂ is given by the K-fold cross-validation. A direct application of Lemma 3.7 implies that

the prediction interval with asymptotic coverage probability (1 − α) for Y corresponding to x∗ is

given by [Sx(β̂)− Φ−1(1− α/2)V, Sx(β̂) + Φ−1(1− α/2)V ], where

V = σ̂ + n−1/2(σ̂2ŵT Ĉŵ)1/2.

For reader’s convenience, the procedure to construct the prediction interval for sparse additive

models is summarized in Algorithm 2. Finally, we comment that if we set x∗ = (x∗1, 0, ..., 0) and

choose n1/(2k) � mn � n1/3, then the prediction interval in Algorithm 2 reduces to the confidence

interval for the first component of function f1(x) at x = x∗1. By Theorem 3.5 and Lemmas 3.6, 3.7,

the confidence interval for f1(x∗1) has the correct coverage probability asymptotically.

Algorithm 2 Calculate the prediction intervals for sparse additive models

Require: : Loss function `(β) = (2n)−1‖Y − Zβ‖22, where Z = (Z1, ...Zn)T and Zi is defined in

(3.2). Tuning parameters λ and λ′, covariate x∗ and z∗ = (Φ(x∗1)T , ...,Φ(x∗d)
T )T , significance

level 0 < α < 1.

(i) Calculate β̂ as β̂ = argminβ

{
`(β) + λ

∑d
j=1 ‖βj‖2

}
.

(ii) Estimate ŵ by

ŵ = argmin
w∈Rdmn

wT Ĉw, subject to
∥∥z∗ + Ĉw

∥∥
∞ ≤ λ

′.

(iii) Calculate the estimator

Sx(β̂) = z∗>β̂ − 1

n

n∑
i=1

ŵTZi(Yi −ZT
i β̂), and σ̂2 = n−1

n∑
i=1

(Yi −ZT
i β̂)2.

return Prediction intervals [Sx(β̂) − Φ−1(1 − α/2)V, Sx(β̂) + Φ−1(1 − α/2)V ], where V =

σ̂ + n−1/2(σ̂2ŵT Ĉŵ)1/2.
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4 Simulation Results

4.1 Linear regression model

A simulation study is conducted to examine the finite sample performance of the proposed predic-

tion interval. We first consider the coverage ratio of the mean parameter,

x∗>β∗ ∈
[
Sx(β̂)− Φ−1(1− α/2)σ̂

√
ŵT Σ̂ŵ/n, Sx(β̂) + Φ−1(1− α/2)σ̂

√
ŵT Σ̂ŵ/n

]
.

We fix the significance level at α = 0.05, and consider sample size n = 100 and number of covariates

d = 200. The data are generated from model (2.1). In particular, the error εi follows i.i.d. N(0, 1)

distribution. The covariates Xi are generated from a multivariate Gaussian distribution N(0,Σ)

where Σij = 0.6|i−j|. We assume in the model that the intercept is 0. Furthermore, we set

β∗j = µ > 0, for j = 1, 2, 3 and β∗j = 0 for j = 4, ..., d. Hence, s∗ = ‖β∗‖0 = 3. The future covariates

x∗ is drawn randomly from N(0,Σ) and is fixed in the simulation.

We consider the following three methods to estimate β, namely, Lasso, SCAD and post-Lasso.

In the Lasso procedure, we estimate β̂ with tuning parameter λ chosen from cross-validation with

cv.glmnet command in R package glmnet. For SCAD, we use the R package ncvreg. Similarly,

the tuning parameter is chosen by cross-validation. For post-Lasso, we first fit Lasso with tuning

parameter chosen by cross-validation to find the estimator β̂ and its support Ŝ = supp(β̂), and

then perform ordinary least square estimation on covariates X
i,Ŝ restricted to the estimated sup-

port. The resulting estimator is called the post-Lasso estimator β̂post (Belloni and Chernozhukov,

2013). In the simulation studies, Sx(β̂Lasso) and Sx(β̂SCAD) are constructed with Lasso and SCAD

estimators as in Algorithm 1. For post-Lasso, we consider two possibilities to construct confidence

intervals for the mean parameter based on the post-Lasso estimator β̂post. The first approach (Post-

Lasso 1) is to estimate x∗>β∗ by Sx(β̂post) = x∗>β̂post − n−1ŵT
∑n

i=1Xi(Yi −XT
i β̂post), where ŵ

is defined in (2.2). The confidence interval is constructed by the same way as that for the Lasso

estimator. In the second approach (Post-Lasso 2), we directly estimate the mean parameter by

x∗>β̂post, and the confidence interval is constructed based on the ordinary least square regression

(Faraway, 2014).

We can select the tuning parameter based on

λ′ = Cλmax(Σ)

√
log d

n
,

where C is a constant. We choose C such that λ′ satisfies 0.8‖x∗‖∞ ≤ λ′ ≤ 0.9‖x∗‖∞. Hence, for

Lasso and Post-Lasso we set C = 0.045, 0.0475; for SCAD we set C = 0.25, 0.26. To perform the

linear programing required for computing ŵ, we use fastlp in R package fastclime. The number

of simulation iterations is 500.

Table 1 shows the averaged coverage probability and length of confidence intervals based on

the Lasso, SCAD, Post-Lasso 1 and Post-Lasso 2. We find that the Lasso, SCAD, and Post-Lasso

1 all have similar results in terms of coverage probability and length of confidence intervals. This

shows that our method for constructing confidence intervals for mean parameters is quite robust
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to the initial estimator β̂. In addition, when the signal strength µ is weak, say µ = 0.2, 0.5, the

naive approach (Post-Lasso 2) by ignoring the uncertainty in the model selection leads to incorrect

coverage probability. We also note that the length of confidence intervals for Post-Lasso 2 is much

wider than the other methods for µ = 0.2. This is due to the fact that in such weak signal

situation the recovered support is often empty, so that the length of the confidence interval is

totally determined by the estimated model errors.

Table 1: The averaged coverage probability and length (in parenthesis) of confidence intervals for

x∗>β∗ under linear regression models. Nominal coverage 1− α = 0.95.

Method C µ = 0.2 µ = 0.5 µ = 1 µ = 2 µ = 3 µ = 4 µ = 5

Lasso 0.045 0.992 0.992 0.992 0.996 0.996 1.000 1.000

(0.162) (0.135) (0.135) (0.136) (0.145) (0.159) (0.178)

0.0475 0.962 0.940 0.938 0.950 0.958 0.966 0.976

(0.085) (0.085) (0.085) (0.086) (0.092) (0.101) (0.113)

SCAD 0.0625 0.994 0.986 0.998 0.992 0.994 0.994 0.994

(0.134) (0.144) (0.128) (0.132) (0.133) (0.133) (0.134)

0.065 0.968 0.936 0.970 0.984 0.986 0.986 0.986

(0.097) (0.091) (0.093) (0.096) (0.096) (0.097) (0.097)

Post-Lasso 1 0.045 0.984 0.984 0.988 0.990 0.990 0.992 0.998

(0.156) (0.135) (0.135) (0.136) (0.145) (0.159) (0.178)

0.0475 0.952 0.914 0.946 0.950 0.962 1.000 0.978

(0.085) (0.085) (0.085) (0.086) (0.092) (0.101) (0.113)

Post-Lasso 2 - 0.830 0.878 0.920 0.920 0.920 0.954 0.950

(2.148) (0.049) (0.075) (0.072) (0.054) (0.086) (0.077)

We also consider the coverage ratio of the prediction intervals

Y ∗ ∈
[
Sx(β̂)− Φ−1(1− α/2)σ̂(1 +

√
ŵT Σ̂ŵ/n), Sx(β̂) + Φ−1(1− α/2)σ̂(1 +

√
ŵT Σ̂ŵ/n)

]
,

where Y ∗ = x∗>β∗+ε∗, where ε∗ is independent of {Xi}ni=1 and i.i.d. with {εi}ni=1. The simulation

setting is exactly the same as that for Table 1.

Table 2 shows the averaged coverage probability and length of prediction intervals based on the

Lasso, SCAD and Post-Lasso 1. A general tendency is that the length of prediction intervals for

Y ∗ is much larger than that for x∗>β∗ shown in Tables 1. Note that when α = 0.05, σ̂ ≈ 1 if the

estimator is accurate. Thus, it is usual that the size of the prediction interval is greater than 4.

For all procedures, when µ increases, the length of the prediction interval are also getting slightly

larger. In particular, the prediction intervals constructed by the SCAD estimator is wider than

the prediction intervals constructed by the other methods, when µ is large. This results from large

variance of model error σ̂ estimated by using the SCAD estimator. Indeed, for µ = 5, the median

of the estimated variance of model error using the SCAD estimator is 1.947, while using the Lasso

estimator this value is 1.159.
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Table 2: The averaged coverage probability and length (in parenthesis) of prediction intervals for

Y ∗ under linear regression models. Nominal coverage 1− α = 0.95.

Method C µ = 0.2 µ = 0.5 µ = 1 µ = 2 µ = 3 µ = 4 µ = 5

Lasso 0.045 0.962 0.964 0.964 0.966 0.974 0.978 0.980

(4.199) (4.210) (4.206) (4.235) (4.439) (4.818) (5.334)

0.0475 0.962 0.964 0.964 0.966 0.974 0.978 0.980

(4.194) (4.208) (4.204) (4.232) (4.436) (4.815) (5.331)

SCAD 0.0625 0.960 0.958 0.972 0.970 0.976 0.976 0.976

(4.124) (4.198) (4.431) (4.850) (5.667) (6.622) (7.627)

0.065 0.960 0.958 0.972 0.970 0.976 0.976 0.976

(4.123) (4.197) (4.430) (4.849) (5.665) (6.620) (7.625)

Post-Lasso 1 0.045 0.962 0.962 0.962 0.964 0.972 0.978 0.980

(4.199) (4.210) (4.206) (4.235) (4.439) (4.818) (5.334)

0.0475 0.964 0.962 0.962 0.964 0.972 0.978 0.980

(4.194) (4.208) (4.204) (4.232) (4.436) (4.815) (5.331)

4.2 Sparse additive model

We consider the following simulation scenarios for sparse additive models. The data are generated

from the model: Yi = f(Xi) + εi, where f(Xi) =
∑s

j=1 fj(Xij). The following choices of functions

are adopted,

f1(t) = 5t; f2(t) = 3(2t− 1)2;

f3(t) = 4 sin(2πt)/(2− sin(2πt)) + 6
{

0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin(2πt)2

+ 0.4 cos(2πt)3 + 0.5 sin(2πt)3
}
,

with t ∈ [0, 1]. The covariate Xi is generated by first simulating X̃i from a multivariate Gaussian

distribution N(0,Σ) where Σij = 0.6|i−j|, and then transforming back to interval [0, 1] by Xij =

Φ(X̃ij) for each j = 1, .., d. Therefore, Xij is uniformly distributed and has compact support. The

sample size is n = 100 and d = 50. The B-spline basis is applied and the number of spline basis

mn is mn = 6. The functions are estimated by the group Lasso implemented in R package grpreg

with λ̂ chosen by K-fold cross-validation, where K = 10. Again, ŵ is estimated with fastlp in R

package fastclime, with λ′ chosen by

λ′ = C
λmax(Ĉ)

λmin(Ĉ)

√
log(6d)

n
,

where C is a constant. In fact, using Lemma 6.2 of Zhou et al. (1998), equidistant grid and the

fact that the marginal distributions of Xi are uniform, we can estimate λmax(Ĉ)/λmin(Ĉ) = q/c2
0,

where q is the degree of the spline function and c0 is an absolute constant. Therefore, we have

λ′ = C ′
√

log(6d)/n, and we choose C ′ = 1.225, 1.25 and 1.3 The future covariates x∗ is drawn

randomly from N(0,Σ) and is fixed in the simulation.
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Table 3 shows that the coverage probability and length of confidence intervals for z∗>β∗ under

the sparse additive models. We find that the confidence intervals are accurate under a variety of

scenarios from f = f1 to f =
∑3

i=1 fi. Similar patterns are observed in Table 4 for prediction

intervals.

Table 3: The averaged coverage probability and length (in parenthesis) of confidence intervals for

z∗>β∗ under sparse additive models. Nominal coverage 1− α = 0.95.

f = f1 f =
∑2

i=1 fi f =
∑3

i=1 fi

C = 1.225 0.980 0.986 0.982

(11.662) (11.109) (14.041)

C = 1.25 0.978 0.988 0.960

(11.504) (11.077) (13.793)

C = 1.3 0.974 0.982 0.962

(10.913) (10.546) (13.182)

Table 4: The averaged coverage probability and length (in parenthesis) of prediction intervals for

Y ∗ under sparse additive models. Nominal coverage 1− α = 0.95. d = 50.

f = f1 f =
∑2

i=1 fi f =
∑3

i=1 fi

C = 1.225 0.964 0.978 0.966

(12.207) (11.649) (14.725)

C = 1.25 0.964 0.974 0.956

(12.065) (11.623) (14.472)

C = 1.3 0.956 0.956 0.938

(11.493) (11.123) (13.899)

5 Real Data Analysis

In this section, we apply our method to two real datasets. In Section 5.1, we construct the prediction

interval for the median value of owner-occupied homes with housing-specific variables in the Boston

Housing data. In Section 5.2, we illustrate our method to whole-genome regression (WGR) with

data containing BMI and genome markers from mice.

5.1 Boston Housing Data

In this section we apply our method to Boston Housing data, which is available in R package MASS.

The data consist of 14 variables with sample size 506. We use the median value of owner-occupied

homes as the response variable Yi and the remaining 13 variables as covariates. To demonstrate
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the applicability of our method to high dimensional data, we simulate additional variable Xi of

dimension d − 13, where d = 400 in the first scenario and d = 600 in the second scenario. In

particular, the simulated covariate follows a joint Gaussian distribution N(0,Σ), where Σ is a

(d− 13)× (d− 13) matrix with Σij = 0.6|i−j|. To examine the validity of prediction, the data set

is divided into two parts: the training data with sample size n and testing data with size 506− n,

where n = 100, 200 and n = 300. The training data are used to derive the estimators β̂ under

the linear model assumption, where β̂ is given by the Lasso estimator with tuning parameter λ

chosen by cross-validation. For each sample (Ỹi, X̃i) in the testing data set, we predict the response

given the covariate x∗ = X̃i. The prediction interval as described in Algorithm 1 is constructed.

We examine whether it covers the true testing sample Ỹi. The selection of tuning parameter λ′ is

similar to that of the simulation study in Section 4.1.

Table 5 shows the coverage probabilities and length of prediction intervals. It is seen that the

coverage probabilities are quite robust to the choice of C for a variety of combinations of (n, d).

Table 5: The 95% coverage probability and length (in parenthesis) of the prediction intervals for

Boston Housing data. Nominal coverage 1− α = 0.95.

d = 400 d = 600

n = 100 n = 200 n = 300 n = 100 n = 200 n = 300

C = 0.00005 0.9655 1.0000 1.0000 0.9655 1.0000 1.0000

(47.472) (51.394) (63.573) (47.346) (53.713) (62.757)

C = 0.0001 0.9729 1.0000 1.0000 0.9754 0.9967 1.0000

(43.352) (53.671) (55.754) (43.362) (53.475) (55.582)

C = 0.0005 0.9286 0.9542 0.9515 0.9286 0.9412 0.9515

(32.660) (40.236) (37.938) (32.532) (37.431) (37.812)

C = 0.005 0.9409 0.9412 0.9563 0.9384 0.9412 0.9563

(32.465) (33.015) (38.028) (32.407) (32.827) (37.670)

5.2 Prediction with Whole-Genome Regression

Prediction based on genetic markers is important for many applications, such as animal and plant

breeding. Such prediction is usually carried out by the whole-genome regression (WGR) proposed

by Meuwissen et al. (2001), where the phenotype as a response variable is regressed on thousands

of genetic markers. Please see de los Campos et al. (2013) for a detailed review on this approach.

In this section, we apply our method to a dataset with genotype and phenotype for mice from

the Wellcome Trust (http://gscan.well.ox.ac.uk). The dataset, built in R-package BGLR, consists

of genotypes and phenotypes of 1814 mice. Each mouse was genotyped at 10346 single nucleotide

polymorphisms (SNPs). For more detailed description and the pre-processing of the dataset, please

see Pérez and de los Campos (2014). We use the BMI index in the variable Obesity.BMI as the

response variable, and the SNPs in mice.X as the independent variables. To reduce the dimension-

ality, we first apply the sure screening method in Fan and Lv (2008), which is implemented by the
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function SIS in R-package SIS. The results suggest that 146 SNPs are relevant. To demonstrate

the performance of our method under high dimensionality, we randomly add in SNPs other than

these 146 to make a total number of d SNPs as independent variables. We take d = 1000 and 2000.

Similar to the Boston Housing data example, we select n training samples and treat the remaining

1814−n samples as validation samples. The size of the training data is chosen as n = 200, 500 and

1000.

As in the Boston Housing data example, the training data are used to derive the Lasso estimator

β̂ under the linear model assumption with tuning parameter λ chosen by the cross-validation. For

each sample (Ỹi, X̃i) in the testing dataset, we set x∗ = X̃i and consider the its prediction interval.

The selection of tuning parameter λ′ is similar to that of the simulation study in Section 4.1.

Table 6 summarizes the results of coverage probability and length of the prediction intervals

under various situations. For d = 1000, similar to the simulation study, smaller C gives wider

prediction interval and larger coverage. Moreover, the coverage and length of prediction intervals

increases when the sample size of training data increases. The same phenomenon can be found for

the case of d = 2000, while maintaining comparable coverage probabilities as those of d = 1000

requires wider prediction interval. In conclusion, our prediction intervals have reasonable accuracy

and can be used to predict the BMI index based on the high dimensional genomic information.

Table 6: The 95% coverage probability and length (in parenthesis) of the prediction intervals for

the mice gene data. Nominal coverage 1− α = 0.95.

d = 1000 d = 2000

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

C = 0.0008 0.998 0.998 0.998 C = 0.004 0.998 0.998 0.988

(0.971) (1.897) (3.134) (1.038) (2.789) (3.859)

C = 0.0010 0.994 1.000 1.000 C = 0.005 0.988 0.998 0.996

(0.480) (1.313) (2.280) (0.478) (1.505) (2.530)

C = 0.0012 0.926 0.998 0.998 C = 0.006 0.912 1.000 1.000

(0.269) (0.929) (1.805) (0.281) (0.971) (1.950)

6 Discussion

In this paper, we propose a general approach to construct confidence intervals for mean parame-

ters and prediction intervals for future observations in high dimensional linear models and sparse

additive models. From the practical perspective, the method can be easily implemented by using

the existing software packages and our numerical results suggest that the proposed method outper-

forms the confidence and prediction intervals by using the naive Post-Lasso method (Post-Lasso

2). From the theoretical perspective, we provide theoretical guarantees for our method under very

mild conditions for both linear models and sparse additive models.

Similar to the existing inference approaches for βj (Zhang and Zhang, 2014; van de Geer et al.,
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2014; Javanmard and Montanari, 2013), our method involves two tuning parameters, and their

choice may influence the results of inference. One future research direction is to develop an objective

procedure to determine tuning parameters and meanwhile the asymptotic coverage of confidence

and prediction intervals is preserved.

This paper focuses on the post-regularization prediction problems for the linear models and

additive models. It is of interest to further extend our methods to more complex regression models,

such as generalized linear models and generalized additive models.
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Appendix

A Proofs for Sparse High Dimensional Linear Model

A.1 Proof of Lemma 2.1

Proof of Lemma 2.1. By definition, we can show that

S(β̂)− x∗Tβ∗ = x∗T (β̂ − β∗)− ŵT 1

n

n∑
i=1

Xi(Yi −XT
i β̂)

= (β̂ − β∗)T
[
x∗ +

1

n

n∑
i=1

XiX
T
i ŵ

]
︸ ︷︷ ︸

E1

− ŵT

[
1

n

n∑
i=1

Xiεi

]
︸ ︷︷ ︸

E2

.

By Hölder’s inequality,

|
√
nE1| ≤

√
n‖β̂ − β∗‖1 ‖x∗ + Σ̂ŵ‖∞︸ ︷︷ ︸

≤λ′

= OP(s∗λ′
√

log d/n).

For E2, it is seen that n1/2E2 = N , and N | X ∼ N(0, σ2ŵT Σ̂ŵ). this completes the proof.
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A.2 Proof of Lemma 2.2

Proof of Lemma 2.2. Since Σ̂ = n−1
∑n

i=1XiX
T
i , we can show that

x∗ + Σ̂w∗ = − 1

n

n∑
i=1

(XiX
T
i Σ−1x∗ − x∗) = − 1

n

n∑
i=1

(Σ1/2UiU
T
i Σ−1/2x∗ − x∗),

where Ui = Σ−1/2Xi. Now, we consider the jth component of Ti = Σ1/2UiU
T
i Σ−1/2x∗ − x∗. For

Σ
1/2
j∗ UiU

T
i Σ−1/2x∗ with 1 ≤ j ≤ d, we have by Lemma C.2,

‖Σ1/2
j∗ UiU

T
i Σ−1/2x∗‖ψ1 ≤ 2 ‖Σ1/2

j∗ Ui‖ψ2︸ ︷︷ ︸
E1

‖UT
i Σ−1/2x∗‖ψ2︸ ︷︷ ︸

E2

.

For E1, by the definition of ψ2 norm, we can show that E1 ≤ ‖Σ1/2
j∗ ‖2‖Ui‖ψ2 ≤ C

1/2
maxC. The similar

arguments yield E2 ≤ ‖Σ−1/2‖2‖x∗‖2‖Ui‖ψ2 ≤ C
−1/2
min C. Finally, note that ‖x∗‖2 = 1 implies

‖x∗‖∞ ≤ 1. These together imply that ‖Tij‖ψ1 ≤ (1 + 2ρ1/2C2). Finally, by Lemma C.3, with

t = 2(1 + 2ρ1/2C2)
√
C ′′−1 log(d)/n, we obtain

∥∥∥x∗ + Σ̂w∗
∥∥∥
∞
≤ 2(1 + 2ρ1/2C2)

√
C ′′−1 log(d)

n
,

with probability at least 1 − 2d−3, provided 2
√
C ′′−1 log(d)/n ≤ 1, where C ′′ is given in Lemma

C.3.

A.3 Proof of Theorem 2.3

Proof of Theorem 2.3. By Lemma 2.1 with λ′ �
√

log d/n, we have |ξ| = OP(s∗ log d/n1/2), which

is oP(1) under our assumption. This proves that conditioning on the design X and x∗, n1/2(Sx(β̂)−
x∗>β∗)  N(0, σ2ŵT Σ̂ŵ). Finally, we would like to show that the asymptotic variance satisfies

ŵT Σ̂ŵ = OP(1) under the random design. To this end, note that ŵT Σ̂ŵ ≤ w∗>Σ̂w∗, by the

definition of Dantzig selector and Lemma 2.2. In addition

w∗>Σ̂w∗ ≤ w∗>Σw∗ + ‖w∗‖21‖Σ̂−Σ‖max.

For the first term in the right hand side,

w∗>Σw∗ ≤ ‖w∗‖22‖Σ‖2 ≤ ‖x∗‖22‖Σ−1‖22‖Σ‖2 = O(1).

Then, we consider the second term. Note that by the proof of Lemma A.2, we have ‖Σ̂−Σ‖max =

OP(
√

log d/n). By assumption ‖w∗‖21
√

log d/n = O(1), the second term satisfies ‖w∗‖21‖Σ̂ −
Σ‖max = OP(1). Thus, w∗>Σ̂w∗ = OP(1), which completes the proof.
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A.4 Proof of Corollary 2.4

We denote

κ = min
{
s∗

vT Σ̂v

‖vS‖21
: v ∈ Rd\{0}, ‖vSc‖1 ≤ 3‖vS‖1

}
,

as the compatibility factor (Ye and Zhang, 2010), where S = supp(β∗) is the support set of β∗

Proof of Corollary 2.4. To prove this corollary, we need the nonasymptotic bound for E1 in the

proof of Lemma 2.1. Then, we invoke the following lemma.

Lemma A.1. Assume Σ̂jj = 1, for j = 1, ..., d. Then, for the Lasso estimator β̂, with probability

at least 1− 2d−2, we have ‖β̂ − β∗‖1 ≤ 4λs∗/κ, provided λ ≥ 4σ2
√

6(log d)/n.

Proof. The proof follows by combining Theorem 6.1 and Lemma 6.2 in Bühlmann and van de Geer

(2011).

This Lemma shows that with probability at least 1 − 2d−2, |
√
nE1| ≤ 4

√
nλλ′s∗/κ, provided

λ ≥ 4σ2
√

6(log d)/n. Then, we need the next lemma, which shows that the compatibility factor κ

can be bounded from below with high probability.

Lemma A.2. Assume that 2
√
C ′′−1 log(d)/n ≤ 1 and 32(2C2 + 1)ρs∗

√
C ′′−1 log(d)/n ≤ 1/2,

where ρ = Cmax/Cmin. Under the conditions in Lemma 2.2, we have κ ≥ Cmin/2, with probability

at least 1− 2d−2.

Proof. See Appendix A for a detailed proof.

The nonasymptotic bound in the theorem is then proved by combining Lemmas 2.2 and A.2.

A.5 Proof of Lemma 2.5

Proof of Lemma 2.5. We note that

σ̂2 − σ2 =
( 1

n

n∑
i=1

ε2
i − σ2

)
+ ∆̂T Σ̂∆̂− 2∆̂T 1

n

n∑
i=1

εiXi, (A.1)

where ∆̂ = β̂ − β∗. By the law of large numbers, |n−1
∑n

i=1 ε
2
i − σ2| = OP(n−1). For the second

term of (A.1), Theorem 7.2 of Bickel et al. (2009) implies ∆̂T Σ̂∆̂ ≤ Cs∗ log d/n, for some constant

C, with high probability. Finally, by Lemma A.1 and Lemma C.3, the last term of (A.1) satisfies∣∣∣∆̂T 1

n

n∑
i=1

εiXi

∣∣∣ ≤ ‖∆̂‖1 · ∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥
∞
≤ C s log d

n
,

for some constant C with high probability. Combining these results with equation (A.1), we have

in probability |σ̂2 − σ2| ≤ C
√

1
n ∨

s log d
n , for some sufficiently large constant C.
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A.6 Proof of Lemma A.2

Proof of Lemma A.2. By the definition of κ and the fact that ‖vS‖1 ≤ s∗1/2‖vS‖2 ≤ s∗1/2‖v‖2, we

have

κ ≥ min
{vT Σ̂v

‖v‖22
: v ∈ Rd\{0}, ‖vSc‖1 ≤ 3‖vS‖1

}
.

It is easily seen that

vT Σ̂v

‖v‖22
=

vTΣv

‖v‖22
+

vT (Σ̂−Σ)v

‖v‖22
≥ Cmin −

‖v‖21‖Σ̂−Σ‖max

‖v‖22
.

In addition, by ‖v‖21 ≤ 16‖vS‖21 ≤ 16s∗‖v‖22, we can show that

vT Σ̂v

‖v‖22
≥ Cmin − 16s∗‖Σ̂−Σ‖max.

Since Σ̂ = n−1
∑n

i=1 Σ1/2(Σ−1/2Xi)(Σ
−1/2Xi)

TΣ1/2, similar to the proof of Lemma 2.2, for any

j = 1, ..., d, we have ‖Σ1/2
j∗ (Σ−1/2Xi)‖ψ2 ≤ ‖Σ

1/2
j∗ ‖2‖Σ−1/2Xi‖ψ2 ≤ C

1/2
maxC. Thus, we obtain

‖(Σ̂−Σ)jk‖ψ1 ≤ ‖Σ̂jk‖ψ1 + Cmax ≤ 2CmaxC
2 + Cmax, for any j, k = 1, ..., d. By the union bound

inequality and the Bernstein inequality in Lemma C.3, we obtain

‖Σ̂−Σ‖max ≤ 2(2CmaxC
2 + Cmax)

√
C ′′−1 log(d)

n
,

with probability at least 1−2d−2, provided 2
√
C ′′−1 log(d)/n ≤ 1, where C ′′ is given in Lemma C.3.

Hence, with 32(2CmaxC
2 + Cmax)s∗

√
C ′′−1 log(d)/n ≤ Cmin/2, we derive vT Σ̂v/‖v‖22 ≥ Cmin/2.

This completes the proof.

B Proofs for the Sparse High Dimensional Additive Model

B.1 Proof of Theorem 3.5

To prove Theorem 3.5, we first need the following two Lemmas.

Lemma B.1. Denote ∆̂ = β̂ − β∗. Then, we have(
λ− ‖∇`(β∗)‖2,∞

)
‖∆̂Sc‖2,1 ≤

(
λ+ ‖∇`(β∗)‖2,∞

)
‖∆̂S‖2,1.

It implies that, ‖∆̂Sc‖2,1 ≤ 3‖∆̂S‖2,1 with probability at least 1−2d−1 when λ ≥ 4(2C̄C
′′−1mn log d/n)1/2+

4s∗Cφm
1/2−k
n , where Cφ satisfies supx∈[a,b] |fj(x)−Φ(x)Tβ∗j | ≤ Cφm−kn and C̄ > 0 satisfies |ψk| ≤ C̄.

Proof. For brevity, denote ∇`(β∗) = 1
n

∑n
i=1Zi(Yi − ZT

i β
∗). Note that β∗j = 0 if j ∈ Sc. Let

D(β1,β) = (β1−β)T Ĉ(β1−β) denote the symmetrized Bregman divergence. Denote ∆̂j = β̂j−β∗j .
Thus

D(β̂,β∗) = ∆̂T {∇`(β∗ + ∆̂)−∇`(β∗)}
=

∑
j∈Sc

β̂Tj ∇j`(β∗ + ∆̂) +
∑
j∈S

∆̂j∇jL(β∗ + ∆̂)− ∆̂T `(β∗).
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Furthermore, by the KKT condition, ∇j`(β̂) = −λ β̂j

‖β̂j‖2
, if ‖β̂j‖2 6= 0,

‖∇j`(β̂)‖2 ≤ λ, if ‖β̂j‖2 = 0.
(B.1)

We have

D(β̂,β∗) ≤ −
∑
j∈Sc

λ‖β̂j‖2 +
∑
j∈S
‖∆̂j‖2λ+

d∑
j=1

‖∆̂j‖2‖∇j`(β∗)‖2

≤ −λ‖∆̂Sc‖2,1 + λ‖∆̂S‖1 + ‖∆̂‖2,1‖∇`(β∗)‖2,∞
=

(
λ+ ‖∇`(β∗)‖2,∞

)
‖∆̂S‖2,1 −

(
λ− ‖∇`(β∗)‖2,∞

)
‖∆̂Sc‖2,1.

Since D(β̂,β∗) ≥ 0, we have(
λ− ‖∇`(β∗)‖2,∞

)
‖∆̂Sc‖2,1 ≤

(
λ+ ‖∇`(β∗)‖2,∞

)
‖∆̂S‖2,1.

Next we bound the ‖∇`(β∗)‖2,∞,

‖∇`(β∗)‖2,∞ =

∥∥∥∥ 1

n

n∑
i=1

Zi(Yi −ZT
i β
∗)

∥∥∥∥
2,∞

=

∥∥∥∥ 1

n

n∑
i=1

Ziεi

∥∥∥∥
2,∞︸ ︷︷ ︸

E1

+

∥∥∥∥ 1

n

n∑
i=1

Zi(

d∑
j=1

fj(Xij)−ZT
i β
∗)

∥∥∥∥
2,∞︸ ︷︷ ︸

E2

.

Note that ‖n−1εiZij‖2 ≤
√
mn‖n−1εiZij‖∞. For any k = 1, ...,mn, let ∆jk = n−1εiψk(Xij). Since

‖εi‖ψ1 ≤ ‖εi‖ψ2 ≤ Cε and |ψk| ≤ 2C̄, for some C̄ > 0 by the assumption on the basis function.

It therefore follows by Lemma C.3 and union bound that E1 ≤ 2(2C̄C
′′−1mn log d/n)1/2 with

probability at least 1− 2d−1.

On the other hand,∥∥∥∥ 1

n

n∑
i=1

Zi(

d∑
j=1

fj(Xij)−ZT
i β
∗)

∥∥∥∥
2,∞
≤ (mn)1/2

∥∥∥∥ 1

n

n∑
i=1

Zi(

d∑
j=1

fj(Xij)−ZT
i β
∗)

∥∥∥∥
∞
,

and we have∥∥∥∥ 1

n

n∑
i=1

Zi(

d∑
j=1

fj(Xij)−ZT
i β
∗)

∥∥∥∥
∞
≤ 2n−1

n∑
i=1

∣∣∣∣∑
j∈S

{
fj(Xij)− Z̃T

ijβ
∗
j

}∣∣∣∣+

∥∥∥∥ 1

n

n∑
i=1

Zi︸ ︷︷ ︸
=0

(Z̄Tβ∗)

∥∥∥∥
∞

≤ 2s∗Cφm
−k
n .

where supx∈[a,b] |fj(x) − Φ(x)Tβ∗j | ≤ Cφm
−k
n . Hence, |E2| ≤ 2s∗Cφm

1/2−k
n . This completes the

proof.
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In the following we derive the rate of convergence for the estimator β̂.

Theorem B.2. Under Assumption 3.4 and Lemma B.1, with probability at least 1− 2d−1,

‖β̂ − β∗‖2,1 ≤ 6τ−1s∗mnλ. (B.2)

Proof. Let ∆̂ = β̂ − β∗. Note that

D(β̂,β∗) ≤
(
λ+ ‖∇`(β∗)‖2,∞

)
‖∆̂S‖2,1 ≤

3λ

2
‖∆̂S‖2,1.

By (3.6), we have

D(β̂,β∗) ≥ τm−1
n ‖∆̂‖22,2 ≥ τm−1

n ‖∆̂S‖22,2 ≥ τm−1
n s∗−1‖∆̂S‖22,1.

This implies that

‖∆̂S‖2,1 ≤
3s∗mnλ

2τ
.

Together with ‖∆̂Sc‖2,1 ≤ 3‖∆̂S‖2,1 in Lemma B.1, we have

‖∆̂‖2,1 = ‖∆̂S‖2,1 + ‖∆̂Sc‖2,1 ≤ 4‖∆̂S‖2,1 ≤
6s∗mnλ

τ
.

This completes the proof of (B.2).

Equipped with Lemma B.1 and Lemma B.2, we can now prove Theorem 3.5.

Proof of Theorem 3.5. It follows from the definition of Sx(β̂) that

Sx(β̂)− z∗>β∗

= z∗>(β̂ − β∗)− ŵT 1

n

n∑
i=1

Zi(Yi −ZT
i β̂)

=

(
z∗ + ŵTn−1

n∑
i=1

ZiZ
T
i

)T
(β̂ − β∗)︸ ︷︷ ︸

E1

− ŵTn−1
n∑
i=1

Zi

 p∑
j=1

fj(Xij)−ZT
i β
∗


︸ ︷︷ ︸

E2

− ŵTn−1
n∑
i=1

Ziεi.

Observe that ‖β̂ − β∗‖1 ≤
√
mn‖β̂ − β∗‖2,1, from Theorem B.2, we can bound E1 as

|E1| ≤ ‖β̂ − β∗‖1λ′ ≤
√
mn‖β̂ − β∗‖2,1λ′ ≤

√
mn6s∗τ−1mnλ

′(4(2C̄C
′′−1mn log d/n)1/2 + 4s∗Cφm

1/2−k
n )

with probability at least 1− 2d−1 by Lemmas B.1 and B.2. Recall that Zi = Z̃i − Z̄, and

E2 = n−1
n∑
i=1

ŵTZi

 p∑
j=1

fj(Xij)− Z̃T
i β
∗


︸ ︷︷ ︸

E21

+n−1
n∑
i=1

ŵTZiZ̄
Tβ∗︸ ︷︷ ︸

E22

.

23



First, we note that if fj = 0, the corresponding coefficients in β∗ are also 0. Therefore, by

supx∈[a,b] |fj(x)− Φ(x)Tβ∗j | ≤ Cφm−1
n ,∣∣∣∣∣∣

p∑
j=1

fj(Xij)− Z̃T
i β
∗

∣∣∣∣∣∣ =
∑
j∈S
|fj(Xij)−Φ(Xij)

Tβ∗j | = O(s∗m−kn ). (B.3)

To deal with E21, Hölder’s inequality implies that

|E21| ≤

√√√√n−1

n∑
i=1

(ŵTZi)2

√√√√n−1

n∑
i=1

( p∑
j=1

fj(Xij)− Z̃T
i β
∗
)2

=
√

ŵT Ĉŵ

√√√√n−1

n∑
i=1

( p∑
j=1

fj(Xij)− Z̃T
i β
∗
)2

. (B.4)

To find the order of ŵT Ĉŵ, first note that ŵT Ĉŵ ≤ w∗>Ĉw∗, by the definition of Dantzig selector

and Lemma 3.6. In addition

w∗>Ĉw∗ ≤ w∗>Cw∗ + ‖w∗‖21‖Ĉ−C‖max.

For the first term in the right hand side,

w∗>Cw∗ ≤ ‖w∗‖22‖C‖2 ≤ ‖x∗‖22‖C−1‖22‖C‖2 = O(mn).

For the second term, note that similar to the proof of Lemma A.2, we have ‖Ĉ − C‖max =

OP(
√

log dmn/n). Therefore, by assumption on ‖w∗‖1:

‖w∗‖21‖Ĉ−C‖max = OP
(
‖w∗‖21

√
log dmn

n

)
= OP(mn).

Therefore, we conclude that
√

w∗>Ĉw∗ = OP(m
1/2
n ).

Using (B.3), we can bound the second term of (B.4) by OP(s∗m−kn ). To sum up,

|E21| = OP(s∗m1/2−k
n ).

For E22, the centeredness of Zi yields that

E22 = (Z̄Tβ∗)ŵT

(
n−1

n∑
i=1

Zi

)
= 0. (B.5)

To sum up, |E2| = OP(s∗m
1/2−k
n ).

The asymptotic distribution therefore depends on N =
√

n
mn

ŵTn−1
∑n

i=1Ziεi. Conditioning

on the design matrix X and x∗, we have N ∼ N(0,m−1
n σ2ŵT Ĉŵ).
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B.2 Proof of Lemma 3.6

Proof of Lemma 3.6. Since Ĉ = n−1
∑n

i=1ZiZ
T
i , we can show that

z∗ + Ĉw∗ = − 1

n

n∑
i=1

(ZiZ
T
i C−1z∗ − z∗) = − 1

n

n∑
i=1

(C1/2UiU
T
i C−1/2z∗ − z∗),

where Ui = C−1/2Zi. Now, we consider the jth component of Ti = C1/2UiU
T
i C−1/2z∗ − z∗. For

C
1/2
j∗ UiU

T
i C−1/2z∗ with 1 ≤ j ≤ d, we have by Lemma C.2,

‖C1/2
j∗ UiU

T
i C−1/2z∗‖ψ1 ≤ 2 ‖C1/2

j∗ Ui‖ψ2︸ ︷︷ ︸
E1

‖UT
i C−1/2z∗‖ψ2︸ ︷︷ ︸

E2

.

For E1, by the definition of ψ2 norm, we can show that E1 ≤ ‖C1/2
j∗ ‖2‖Ui‖ψ2 ≤ m

1/2
n C

1/2
maxC. The

similar arguments yield E2 ≤ ‖C−1/2‖2‖z∗‖2‖Ui‖ψ2 ≤ m
−1/2
n C

−1/2
min C. Finally, note that ‖z∗‖2 = 1

implies ‖z∗‖∞ ≤ 1. These together imply that ‖Tij‖ψ1 ≤ (1 + 2ρ1/2C2). Finally, by Lemma C.3,

with t = 2(1 + 2ρ1/2C2)
√
C ′′−1 log(mnd)/n, we obtain∥∥∥z∗ + Ĉw∗

∥∥∥
∞
≤ 2(1 + 2ρ1/2C2)

√
C ′′−1 log(mnd)

n
,

with probability at least 1 − 2(dmn)−3, provided 2
√
C ′′−1 log(dmn)/n ≤ 1, where C ′′ is given in

Lemma C.3.

B.3 Proof of Lemma 3.7

Proof of Lemma 3.7. Observe that

σ̂2 − σ2 =
1

n

n∑
i=1

(ε2
i − σ2)︸ ︷︷ ︸

E1

+
1

n

n∑
i=1

 p∑
j=1

fj(Xij)−ZT
i β̂

2

︸ ︷︷ ︸
E2

− 2
1

n

n∑
i=1

εi

 p∑
j=1

fj(Xij)−ZT
i β̂


︸ ︷︷ ︸

E3

.

(B.6)

E1: By Assumption 3.2 and the Bernstein inequality in Lemma C.3, the first term in (B.6) is of

order OP(
√

logn
n ) = oP(1).

E2: To bound the second term, since Zi = Z̃i−Z̄, note that by the inequality (a+b)2 ≤ 2a2 +2b2

for all a, b ∈ R,

E2 =
1

n

n∑
i=1

 p∑
j=1

fj(Xij)−ZT
i β
∗ +ZT

i (β∗ − β̂)

2

≤ 2

n

n∑
i=1

 p∑
j=1

fj(Xij)− Z̃T
i β
∗ + Z̄Tβ∗

2

︸ ︷︷ ︸
∆21

+
2

n

n∑
i=1

(
ZT
i (β∗ − β̂)

)2

︸ ︷︷ ︸
∆22

, (B.7)
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For ∆21, by the fact that fj 6= 0 for j ∈ S and |S| = s∗ < ∞, |
∑p

j=1 fj(Xij) − Z̃T
i β
∗| =

O(s∗m−kn ). Moreover, in the proof for Lemma C.1 in Huang et al. (2010), it is shown that

Z̄Tβ∗ = OP(s∗m−kn + s∗
√
mn/n). Hence, ∆21 = OP(s∗2m−2k

n + s∗2mn/n).

For ∆22, note that we can express ∆22 = |∆̂T Ĉ∆̂|, where ∆̂ = β̂ − β∗. By Theorem B.2,

∆22 ≤ 9s∗mnλ
2/τ = oP(1).

E3: To control the last term, note that[
1

n

n∑
i=1

εi

( p∑
j=1

fj(Xij)−ZT
i β̂

)]
≤ 1

n

n∑
i=1

ε2
i ·

1

n

n∑
i=1

( p∑
j=1

fj(Xij)−ZT
i β̂

)2

.

The first term on the right hand side converges in probability to a constant by the law of large

numbers. The second term agrees with E2 and is of order oP(1). Thus, we have E3 = oP(1).

Combining E1, E2 and E3, we get the desired result.

C Supplementary Lemmas

The first three lemmas are corresponding to Section 3. Let

S0
nj =

{
fnj : fnj(x) =

mn∑
k=1

bjkψk(x), (βj1, ..., βjmn) ∈ Rmn

}
,

where ψk is defined in Section 3. The following Lemma is proved in Huang et al. (2010).

Lemma C.1 (Lemma 1 of Huang et al. (2010)). Under Assumptions 3.2 and 3.3, for any f ∈ F ,

there exists fn ∈ S0
nj satisfying

‖fn − f‖2 = OP(m−kn +m1/2
n n−1/2).

Lemma C.2. Assume that X and Y are sub-Gaussian. Then ‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2

Lemma C.3 (Bernstein Inequality). Let X1, ..., Xn be independent mean 0 sub-exponential ran-

dom variables and let K = maxi ‖Xi‖ψ1 . The for any t > 0, we have

Pβ∗
(

1

n

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ t) ≤ 2 exp

[
− C ′′min

(
t2

K2
,
t

K

)
n

]
,

where C ′′ > 0 is a universal constant.
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van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically

optimal confidence regions and tests for high-dimensional models. The Annals of Statistics 42

1166–1202.

Vovk, V., Gammerman, A. and Shafer, G. (2005). Algorithmic Learning in a Random World.

Springer.

Vovk, V., Nouretdinov, I. and Gammerman, A. (2009). On-line predictive linear regression.

The Annals of Statistics 37 1566–1590.

Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery

using¡ formula formulatype=. Information Theory, IEEE Transactions on 55 2183–2202.

Wang, L., Kim, Y. and Li, R. (2013). Calibrating nonconvex penalized regression in ultra-high

dimension. Annals of Statistics 41 2505–2536.

Wasserman, L. (2014). Discussion: “a significance test for the lasso”. The Annals of Statistics

42 501–508.

Ye, F. and Zhang, C.-H. (2010). Rate minimaxity of the lasso and dantzig selector for the lq

loss in lr balls. The Journal of Machine Learning Research 9999 3519–3540.

Zhang, C.-H. (2010a). Nearly unbiased variable selection under minimax concave penalty. The

Annals of Statistics 38 894–942.

Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low-dimensional parameters in

high-dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 76 217–242.

Zhang, T. (2009). Some sharp performance bounds for least squares regression with L1 regular-

ization. Annals of Statistics 37 2109–2144.

29



Zhang, T. (2010b). Analysis of multi-stage convex relaxation for sparse regularization. The

Journal of Machine Learning Research 11 1081–1107.

Zhang, T. (2013). Multi-stage convex relaxation for feature selection. Bernoulli 19 2277–2293.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal of Machine

Learning Research 7 2541–2563.

Zhou, S., Shen, X. and Wolfe, D. A. (1998). Local asymptotics for regression splines and

confidence regions. Annals of Statistics 26 1760–1782.

30


	Introduction
	Notations

	Prediction Intervals for Linear Models
	Prediction Intervals for Sparse Additive Models (SPAM)
	Simulation Results
	Linear regression model
	Sparse additive model

	Real Data Analysis
	Boston Housing Data
	Prediction with Whole-Genome Regression

	Discussion
	Proofs for Sparse High Dimensional Linear Model
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Theorem 2.3
	Proof of Corollary 2.4
	Proof of Lemma 2.5
	Proof of Lemma A.2

	Proofs for the Sparse High Dimensional Additive Model
	Proof of Theorem 3.5
	Proof of Lemma 3.6
	Proof of Lemma 3.7

	Supplementary Lemmas

