Directional Pruning of Deep Neural Networks

To appear in NeurIPS 2020

Shih-Kang Chao University of Missouri

Zhanyu Wang Purdue University

Yue Xing Purdue University

Guang Cheng Purdue University

GitHub: gRDA-optimizer

Pruning

- Goal: achieve the same accuracy as a dense networks with only a few nonzero weights
- Pruning is a very active research area. More than 85 papers https://github.com/he-y/Awesome-Pruning

Our Contributions

We provide **directional pruning (DP)**, a new pruning strategy that

- preserves training loss while maximizing the sparsity
- doesn't require retraining

and a theoretically provable \mathcal{C}_1 proximal gradient algorithm to achieve DP

SGD reaches a flat valley

 $\mathscr{P}_0 \subset \mathbb{R}^d$: subspace of flat directions, or the eigenspace associated with zero eigenvalues of the Hessian matrix

Magnitude pruning needs retraining

- Magnitude pruning: perturbing \mathbf{w}^{SGD} to yellow area
- As the yellow area does not overlap \mathscr{P}_0 (documented in prior research), training error increases

Pruning in a flat direction

• $-\Pi_0$ sign(\mathbf{w}^{SGD}): the direction in \mathscr{P}_0 that maximizes sparsity

• Score $s_j > 0$ iff. pruning w_j doesn't increase the loss $\mathbf{s} = \operatorname{sign}(w^{SGD}) \odot \Pi_0 \operatorname{sign}(\mathbf{w}^{SGD})$ elementwise product

Directional Pruning (DP)

Implementation

- Challenge: \mathscr{P}_0 is associated with the zero eigenspace of Hessian, which can't be estimated
- Theorem: gRDA asymptotically solves DP when γ small and n to infinity.
- Generalized regularized dual averaging (gRDA): $\mathbf{w}_{n+1} = \mathscr{S}_{g(n,\gamma)} \left\{ \mathbf{w}_0 - \gamma \sum_{k=0}^n \nabla f(\mathbf{w}_k; Z_{i_{k+1}}) \right\}$ $\mathscr{S}_{g(n,\gamma)} \text{ is soft-thresholding with } g(n,\gamma) = c\gamma^{1/2} (n\gamma)^{\mu}$ γ : learning rate; $c, \mu > 0$: hyperparameters

ResNet50 on ImageNet

We gratefully acknowledge Gale, Elsen and Hooker (2019) who share the data with us

Recap

- **Propose:** directional pruning for deep neural networks
- Implementation: gRDA algorithm, low computational cost
- **Prove:** gRDA asymptotically performs DP
- **Demonstrate:** ResNet50 on ImageNet and more (see paper)

Thank you