PURDUE

Distributed Inference for Quantile Regression Processes
Stanislav Volgushev ${ }^{1}$, Shih-Kang Chao ${ }^{2}$ (skchao74@purdue.edu), Guang Cheng ${ }^{2}$
${ }^{1}$ Department of Statistical Sciences, University of Toronto; ${ }^{2}$ Department of Statistics, Purdue University

Objective

Perform inference using distributed quantile regression and its projected process. Particularly, we need sharp conditions in (S, K) such that the "oracle rule" holds: $\overline{\boldsymbol{\beta}}(\tau)$ in (7) satisfies (3), and $\widehat{\boldsymbol{\beta}}(\tau)$ in (8) satisfies (4).

Quantile regression

Let $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{N}$ be independent and identical samples in \mathbb{R}^{d+1}, where N may be so large that a standalone machine cannot process all the data. Take $\mathcal{T}=\left[\tau_{L}, \tau_{U}\right]$ with $0<\tau_{L}<\tau_{U}<1$, estimate for any fixed $\tau \in \mathcal{T}$, the τ-quantile $Q(x ; \tau)$ of Y given X :

$$
P(Y \leq Q(x ; \tau) \mid X=x)=\tau
$$

Koenker and Bassett (1978): if $Q(x ; \tau)=\boldsymbol{\beta}(\tau)^{\top} x$, estimate by

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}_{o r}(\tau):=\arg \min _{\mathbf{b} \in \mathbb{R}^{m}} \sum_{i=1}^{N} \rho_{\tau}\left\{Y_{i}-\mathbf{b}^{\top} \mathbf{Z}\left(X_{i}\right)\right\} \tag{2}
\end{equation*}
$$

where $\rho_{\tau}(u):=\tau u^{+}+(1-\tau) u^{-}$'check function' $\mathbf{Z}(x) \in \mathbb{R}^{m}$ are transformations of x, e.g. linear model with fixed/increasing dimension, B-splines, polynomials, trigonometric polynomials

Figure 1: Quantile curves $\widehat{Q}(x ; \tau)$ (black, $0.1,0.25,0.5,0.75,0.9$) and the mean curve (blue).

Asymptotics of $\widehat{\boldsymbol{\beta}}_{o r}(\tau)$

Under regularity conditions on \mathbf{Z} and the conditional density $f_{Y \mid X}(y \mid x)$, for any $x_{0} \in \mathcal{X}$ and $\tau \in \mathcal{T}$, $\widehat{\boldsymbol{\beta}}_{o r}(\tau)$ has the weak limit (Chao et al., 2016):
$\sigma_{m, \tau}^{-1}\left(x_{0}\right) \sqrt{N}\left(\mathbf{Z}\left(x_{0}\right)^{\top} \widehat{\boldsymbol{\beta}}_{o r}(\tau)-Q\left(x_{0} ; \tau\right)\right) \rightsquigarrow \mathcal{N}(0,1) \quad$ (3) $\sqrt{N}\left(\mathbf{Z}\left(x_{0}\right)^{\top} \widehat{\boldsymbol{\beta}}_{o r}(\cdot)-Q\left(x_{0} ; \cdot\right)\right) \rightsquigarrow \mathbb{G}(\cdot) \quad$ (4) $\sqrt{N}\left(\widehat{F}_{Y \mid X}^{o r}\left(\cdot \mid x_{0}\right)-F_{Y \mid X}\left(\cdot \mid x_{0}\right)\right) \rightsquigarrow$

$$
-f_{Y \mid X}\left(\cdot \mid x_{0}\right) \mathbb{G}\left(F_{Y \mid X}\left(\cdot \mid x_{0}\right)\right)
$$

where \mathbb{G} is a centered Gaussian process in $\ell^{\infty}(\mathcal{T})$ with continuous sample path, $\sigma_{m, \tau}^{2}\left(x_{0}\right)=\tau(1$ $\tau) \mathbf{Z}\left(x_{0}\right)^{\top} J_{m}(\tau)^{-1} \mathbb{E}\left[\mathbf{Z}(X) \mathbf{Z}(X)^{\top}\right] J_{m}(\tau)^{-1} \mathbf{Z}\left(x_{0}\right)$.

Quantile D\&C and projection

Dividing N samples into S sub-samples.

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}^{s}(\tau):=\arg \min _{\mathbf{b} \in \mathbb{R}^{m}} \sum_{i=1}^{n} \rho_{\tau}\left\{Y_{i s}-\mathbf{b}^{\top} \mathbf{Z}\left(X_{i s}\right)\right\} \\
\overline{\boldsymbol{\beta}}(\tau):=\frac{1}{S} \sum_{s=1}^{S} \widehat{\boldsymbol{\beta}}^{s}(\tau) .
\end{gathered}
$$

(6)
(7)

However, this is only for a fixed τ ! Using projection to avoid repetitively applying $D \& C$. Take $\mathbf{B}:=$ $\left(B_{1}, \ldots, B_{q}\right)^{\top}$ B-spline basis defined on equidistant knots $\left\{t_{1}, \ldots, t_{G}\right\} \subset \mathcal{T}$ with degree $r_{\tau} \in \mathbb{N}$,

$$
\widehat{\boldsymbol{\beta}}(\tau):=\widehat{\Xi}^{\top} \mathbf{B}(\tau) .
$$

(8)

Computation of $\widehat{\Xi}$:
(a) Define a grid of quantile levels $\left\{\tau_{1}, \ldots, \tau_{K}\right\}$ on [$\left.\tau_{L}, \tau_{U}\right], K>q$. For each τ_{k}, compute $\overline{\boldsymbol{\beta}}\left(\tau_{k}\right)$ as (7)
(b) Compute for each $j=1, \ldots, m$

$$
\begin{equation*}
\widehat{\boldsymbol{\alpha}}_{j}:=\arg \min _{\boldsymbol{\alpha} \in \mathbb{R}^{q}} \sum_{k=1}^{K}\left(\bar{\beta}_{j}\left(\tau_{k}\right)-\boldsymbol{\alpha}^{\top} \mathbf{B}\left(\tau_{k}\right)\right)^{2} \tag{9}
\end{equation*}
$$

(c) Set the matrix $\widehat{\Xi}:=\left[\widehat{\boldsymbol{\alpha}}_{1} \widehat{\boldsymbol{\alpha}}_{2} \ldots \widehat{\boldsymbol{\alpha}}_{m}\right]$.

Computation of $\widehat{F}_{Y \mid X}(y \mid x)$

Let $\widehat{\boldsymbol{\beta}}_{o r}(\tau)$ and $\widehat{\boldsymbol{\beta}}(\tau)$ be defined in (2) and (8).
$\widehat{F}_{Y \mid X}^{o r}\left(y \mid x_{0}\right):=\tau_{L}+\int_{\tau_{L}}^{\tau_{U}} \mathbf{1}\left\{\mathbf{Z}\left(x_{0}\right)^{\top} \widehat{\boldsymbol{\beta}}_{o r}(\tau)<y\right\} d \tau$. (10)
$\widehat{F}_{Y \mid X}\left(y \mid x_{0}\right):=\tau_{L}+\int_{\tau_{L}}^{\tau_{U}} \mathbf{1}\left\{\mathbf{Z}\left(x_{0}\right)^{\top} \widehat{\boldsymbol{\beta}}(\tau)<y\right\} d \tau$. (11)

Oracle rule region

Figure 2: Necessary and sufficient conditions on (S, K) for the oracle rule $(\overline{\boldsymbol{\beta}}(\tau)$ in (7) satisfies (3), and $\widehat{\boldsymbol{\beta}}(\tau)$ in (8) satisfies (4)) in linear models with fixed dimension $m<\infty$ (Blue) and B-spline nonparametric models $m \rightarrow$ ∞ (Green).
The dotted region is the discrepancy between the sufficient and necessary conditions.

Simulated coverage probabilities of confidence interval based on $\overline{\boldsymbol{\beta}}(\tau)$
We generate data from $Y_{i}=0.21+\boldsymbol{\beta}_{m-1}^{\top} X_{i}+\varepsilon_{i}$, for $m=4,16,32 . X_{i} \sim \mathcal{U}\left([0,1]^{m-1}\right)$ with covariance matrix $\Sigma_{X}:=\mathbb{E}\left[X_{i} X_{i}^{\top}\right], \Sigma_{j k}=0.1^{2} 0.7^{|j-k|}$ for $j, k=1, \ldots, m-1$. The error $\varepsilon \sim \mathcal{N}$ or $\varepsilon \sim \operatorname{EXP}$ (skewed). $x_{0}=$ $\left(1,(m-1)^{-1 / 2} \mathbf{l}_{m-1}^{\top}\right)^{\top}$. The 95% coverage probability of the confidence interval from (3) using $\overline{\boldsymbol{\beta}}(\tau)$:
$P\left\{x_{0}^{\top} \boldsymbol{\beta}(\tau) \in\left[x_{0}^{\top} \overline{\boldsymbol{\beta}}(\tau) \pm N^{-1 / 2} f_{\varepsilon, \tau}^{-1} \sqrt{\tau(1-\tau) x_{0}^{\top} \Sigma_{X}^{-1} x_{0}} \Phi^{-1}(0.975)\right]\right\}$

Figure 3: Phase transition coverage probability drop to coverage probability drop to When model dimension m in When model dimension m increases, S^{*} decreases. As N increases, S^{*} gets closer to $N^{1 / 2}$ (cf. blue region in Figure 2). In the normal case, the coverage is symmetric in τ.

Simulated coverage probabilities of confidence interval based on $\widehat{F}_{Y \mid X}(y \mid x)$
Same setting for $\left(X_{i}, Y_{i}\right)$ as above. Take B: cubic B-spline with $q=\operatorname{dim}(\mathbf{B})$ defined on $G=4+q$ equidistant knots on $\left[\tau_{L}, \tau_{U}\right]$. We require $K>q$ so that $\widehat{\boldsymbol{\beta}}(\tau)$ is computable. $N=2^{14} . y_{0}=Q\left(x_{0} ; \tau\right)$ so that $F_{Y \mid X}\left(y_{0} \mid x_{0}\right)=\tau$. The 95% coverage probability of the confidence interval from (5) using $\widehat{F}_{Y \mid X}(y \mid x)$ is

$$
P\left\{\tau \in\left[\widehat{F}_{Y \mid X}\left(Q\left(x_{0} ; \tau\right) \mid x_{0}\right) \pm N^{-1 / 2} \sqrt{\tau(1-\tau) x_{0}^{\top} \Sigma_{X}^{-1} x_{0}} \Phi^{-1}(0.975)\right]\right\}
$$

Figure 4: Phase transition coverage probability drop to 0 after either thresholds S^{*} or q^{*}. Increase in model dimenq^{*}. Increase in model dimen-
sion m lowers both S^{*} and q^{*}. sion m lowers both S^{*} and q^{*}.
Increase in q and K improves Increase in q and K improves
the coverage probability. Prothe coverage probability. Pro jection induces additional error causing the normal case asymmetric in τ.

