PURDUE UNIVERSITY®

Distributed Inference for Quantile Regression Processes

Objective

Perform inference using distributed quantile regression and its projected process. Particularly, we need sharp conditions in (S, K) such that the "oracle rule" holds: $\overline{\beta}(\tau)$ in (7) satisfies (3), and $\widehat{\beta}(\tau)$ in (8) satisfies (4).

Quantile regression

Let $\{(X_i, Y_i)\}_{i=1}^N$ be independent and identical samples in \mathbb{R}^{d+1} , where N may be so large that a standalone machine cannot process all the data. Take $\mathcal{T} = [\tau_L, \tau_U]$ with $0 < \tau_L < \tau_U < 1$, estimate for any fixed $\tau \in \mathcal{T}$, the τ -quantile $Q(x; \tau)$ of Y given X:

$$P(Y \le Q(x;\tau)|X=x) = \tau.$$
(1)

Koenker and Bassett (1978): if $Q(x; \tau) = \beta(\tau)^{\top} x$, estimate by

$$\widehat{\boldsymbol{\beta}}_{or}(\tau) := \arg \min_{\mathbf{b} \in \mathbb{R}^m} \sum_{i=1}^N \rho_\tau \{ Y_i - \mathbf{b}^\top \mathbf{Z}(X_i) \}$$
(2)

where $\rho_{\tau}(u) := \tau u^+ + (1 - \tau)u^-$ 'check function'. $\mathbf{Z}(x) \in \mathbb{R}^m$ are transformations of x, e.g. linear model with fixed/increasing dimension, B-splines, polynomials, trigonometric polynomials

Quantile curves $\widehat{Q}(x;\tau)$ (black, τ Figure 1: 0.1, 0.25, 0.5, 0.75, 0.9) and the mean curve (blue).

Asymptotics of $\beta_{or}(\tau)$

Under regularity conditions on **Z** and the conditional density $f_{Y|X}(y|x)$, for any $x_0 \in \mathcal{X}$ and $\tau \in \mathcal{T}$, $\beta_{or}(\tau)$ has the weak limit (Chao et al., 2016):

$$\sigma_{m,\tau}^{-1}(x_0)\sqrt{N}(\mathbf{Z}(x_0)^{\top}\widehat{\boldsymbol{\beta}}_{or}(\tau) - Q(x_0;\tau)) \rightsquigarrow \mathcal{N}(0,1) \quad (3)$$

$$\sqrt{N}(\mathbf{Z}(x_0)^{\top}\widehat{\boldsymbol{\beta}}_{or}(\cdot) - Q(x_0;\cdot)) \rightsquigarrow \mathbb{G}(\cdot) \quad (4)$$

$$\sqrt{N}(\widehat{F}_{Y|X}^{or}(\cdot|x_0) - F_{Y|X}(\cdot|x_0)) \rightsquigarrow$$

$$-f_{Y|X}(\cdot|x_0)\mathbb{G}(F_{Y|X}(\cdot|x_0)), \quad (5)$$

where \mathbb{G} is a centered Gaussian process in $\ell^{\infty}(\mathcal{T})$ with continuous sample path, $\sigma_{m.\tau}^{2^-}(x_0) = \tau(1 - \tau)$ $\tau)\mathbf{Z}(x_0)^{\top}J_m(\tau)^{-1}\mathbb{E}[\mathbf{Z}(X)\mathbf{Z}(X)^{\top}]J_m(\tau)^{-1}\mathbf{Z}(x_0).$

Stanislav Volgushev¹, Shih-Kang Chao²(skchao74@purdue.edu), Guang Cheng² ¹DEPARTMENT OF STATISTICAL SCIENCES, UNIVERSITY OF TORONTO; ²DEPARTMENT OF STATISTICS, PURDUE UNIVERSITY

Quantile D&C and projection

Dividing *N* samples into *S* sub-samples.

$$\widehat{\boldsymbol{\partial}}^{s}(\tau) := \arg \min_{\mathbf{b} \in \mathbb{R}^{m}} \sum_{i=1}^{n} \rho_{\tau} \{ Y_{is} - \mathbf{b}^{\top} \mathbf{Z}(X_{is}) \} \quad (6)$$

$$\overline{\boldsymbol{\beta}}(\tau) := \frac{1}{S} \sum_{s=1}^{S} \widehat{\boldsymbol{\beta}}^{s}(\tau).$$
(7)

However, this is only for a fixed τ ! Using projection to avoid repetitively applying D&C. Take $\mathbf{B} :=$ $(B_1, ..., B_q)^\top$ B-spline basis defined on equidistant knots $\{t_1, ..., t_G\} \subset \mathcal{T}$ with degree $r_{\tau} \in \mathbb{N}$,

$$\widehat{\boldsymbol{\beta}}(\tau) := \widehat{\Xi}^{\top} \mathbf{B}(\tau).$$
 (8)

Computation of $\widehat{\Xi}$:

 \equiv

- (a) Define a grid of quantile levels $\{\tau_1, ..., \tau_K\}$ on $[\tau_L, \tau_U], K > q$. For each τ_k , compute $\beta(\tau_k)$ as
- (b) Compute for each j = 1, ..., m

$$\widehat{\boldsymbol{\alpha}}_{j} := \arg \min_{\boldsymbol{\alpha} \in \mathbb{R}^{q}} \sum_{k=1}^{K} \left(\overline{\beta}_{j}(\tau_{k}) - \boldsymbol{\alpha}^{\top} \mathbf{B}(\tau_{k}) \right)^{2}.$$
(9)

(c) Set the matrix $\widehat{\Xi} := [\widehat{\alpha}_1 \, \widehat{\alpha}_2 \, ... \, \widehat{\alpha}_m].$

Computation of $\widehat{F}_{Y|X}(y|x)$

Let $\widehat{\boldsymbol{\beta}}_{or}(\tau)$ and $\widehat{\boldsymbol{\beta}}(\tau)$ be defined in (2) and (8).

- $\widehat{F}_{Y|X}^{or}(y|x_0) := \tau_L + \int_{\tau_L}^{\tau_U} \mathbf{1}\{\mathbf{Z}(x_0)^\top \widehat{\boldsymbol{\beta}}_{or}(\tau) < y\} d\tau.$ (10)
- $\widehat{F}_{Y|X}(y|x_0) := \tau_L + \int^{\tau_U} \mathbf{1}\{\mathbf{Z}(x_0)^\top \widehat{\boldsymbol{\beta}}(\tau) < y\} d\tau. \quad (11)$

where $0 < \tau_L < \tau_U < 1$.

Oracle rule region

 ∞ (Green). conditions.

Simulated coverage probabilities of confidence interval based on $oldsymbol{eta}(au)$

We generate data from $Y_i = 0.21 + \beta_{m-1}^{\top} X_i + \varepsilon_i$, for m = 4, 16, 32. $X_i \sim \mathcal{U}([0, 1]^{m-1})$ with covariance matrix $\Sigma_X := \mathbb{E}[X_i X_i^{\top}], \Sigma_{jk} = 0.1^2 0.7^{|j-k|}$ for j,k = 1, ..., m-1. The error $\varepsilon \sim \mathcal{N}$ or $\varepsilon \sim \text{EXP}$ (skewed). $x_0 = 1$ $(1, (m-1)^{-1/2} \mathbf{i}_{m-1}^{\dagger})^{\dagger}$. The 95% coverage probability of the confidence interval from (3) using $\overline{\beta}(\tau)$:

Simulated coverage probabilities of confidence interval based on $F_{Y|X}(y|x)$

Same setting for (X_i, Y_i) as above. Take B: cubic B-spline with $q = \dim(\mathbf{B})$ defined on G = 4 + q equidistant knots on $[\tau_L, \tau_U]$. We require K > q so that $\hat{\beta}(\tau)$ is computable. $N = 2^{14}$. $y_0 = Q(x_0; \tau)$ so that $F_{Y|X}(y_0|x_0) = \tau$. The 95% coverage probability of the confidence interval from (5) using $\hat{F}_{Y|X}(y|x)$ is

Figure 2: Necessary and sufficient conditions on (S, K) for the oracle rule $(\overline{\beta}(\tau) \text{ in } (7) \text{ satisfies } (3), \text{ and } \widehat{\beta}(\tau) \text{ in } (8) \text{ satisfies } (4)) \text{ in linear models with }$ fixed dimension $m < \infty$ (Blue) and B-spline nonparametric models $m \rightarrow$

The dotted region is the discrepancy between the sufficient and necessary

Figure 3: Phase transition: coverage probability drop to 0 after certain threshold S^* . When model dimension m increases, S^* decreases. As N increases, S^* gets closer to $N^{1/2}$ (cf. blue region in Figure 2). In the normal case, the coverage is symmetric in τ .

$P\{\tau \in \left[\widehat{F}_{Y|X}(Q(x_0;\tau)|x_0) \pm N^{-1/2}\sqrt{\tau(1-\tau)x_0^{\top}\Sigma_X^{-1}x_0\Phi^{-1}(0.975)}\right]\}$

Figure 4: Phase transition: coverage probability drop to 0 after either thresholds S^* or q^* . Increase in model dimension *m* lowers both S^* and q^* . Increase in *q* and *K* improves the coverage probability. Projection induces additional error causing the normal case asymmetric in τ .