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Objective
Perform inference using distributed quantile regression and its projected process. Particularly, we need sharp
conditions in (S,K) such that the "oracle rule" holds: β(τ) in (7) satisfies (3), and β̂(τ) in (8) satisfies (4).

Quantile regression
Let {(Xi, Yi)}Ni=1 be independent and identical sam-
ples in Rd+1, where N may be so large that a stan-
dalone machine cannot process all the data. Take
T = [τL, τU ] with 0 < τL < τU < 1, estimate for any
fixed τ ∈ T , the τ -quantile Q(x; τ) of Y given X :

P (Y ≤ Q(x; τ)|X = x) = τ. (1)

Koenker and Bassett (1978): if Q(x; τ) = β(τ)>x, esti-
mate by

β̂or(τ) := arg min
b∈Rm

N∑

i=1

ρτ{Yi − b>Z(Xi)} (2)

where ρτ (u) := τu+ + (1 − τ)u− ’check function’.
Z(x) ∈ Rm are transformations of x, e.g. linear model
with fixed/increasing dimension, B-splines, polyno-
mials, trigonometric polynomials
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Figure 1: Quantile curves Q̂(x; τ) (black, τ =
0.1, 0.25, 0.5, 0.75, 0.9) and the mean curve (blue).

Asymptotics of β̂or(τ)
Under regularity conditions on Z and the conditional
density fY |X(y|x), for any x0 ∈ X and τ ∈ T , β̂or(τ)
has the weak limit (Chao et al., 2016):

σ−1m,τ (x0)
√
N(Z(x0)>β̂or(τ)−Q(x0; τ)) N

(
0, 1
)

(3)
√
N
(
Z(x0)>β̂or(·)−Q(x0; ·)

)
 G(·) (4)

√
N
(
F̂ orY |X(·|x0)− FY |X(·|x0)

)
 

− fY |X(·|x0)G
(
FY |X(·|x0)

)
, (5)

where G is a centered Gaussian process in `∞(T )
with continuous sample path, σ2

m,τ (x0) = τ(1 −
τ)Z(x0)>Jm(τ)−1E[Z(X)Z(X)>]Jm(τ)−1Z(x0).

Quantile D&C and projection

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)

β̂1(τ1) β̂2(τ1) β̂3(τ1)
β̂4(τ1)

Dividing N samples into S sub-samples.

β̂s(τ) := arg min
b∈Rm

n∑

i=1

ρτ
{
Yis − b>Z(Xis)

}
(6)

β(τ) :=
1

S

S∑

s=1

β̂s(τ). (7)

However, this is only for a fixed τ ! Using projec-
tion to avoid repetitively applying D&C. Take B :=
(B1, ..., Bq)

> B-spline basis defined on equidistant
knots {t1, ..., tG} ⊂ T with degree rτ ∈ N,

β̂(τ) := Ξ̂>B(τ). (8)

Computation of Ξ̂:

(a) Define a grid of quantile levels {τ1, ..., τK} on
[τL, τU ], K > q. For each τk, compute β(τk) as
(7)

(b) Compute for each j = 1, ...,m

α̂j := arg min
α∈Rq

K∑

k=1

(
βj(τk)−α>B(τk)

)2
. (9)

(c) Set the matrix Ξ̂ := [α̂1 α̂2 ... α̂m].

Computation of F̂Y |X(y|x)
Let β̂or(τ) and β̂(τ) be defined in (2) and (8).

F̂ orY |X(y|x0) := τL +

∫ τU

τL

1{Z(x0)>β̂or(τ) < y}dτ. (10)

F̂Y |X(y|x0) := τL +

∫ τU

τL

1{Z(x0)>β̂(τ) < y}dτ. (11)

where 0 < τL < τU < 1.

Oracle rule region
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Figure 2: Necessary and sufficient conditions on (S,K) for the oracle rule
(β(τ) in (7) satisfies (3), and β̂(τ) in (8) satisfies (4)) in linear models with
fixed dimension m < ∞ (Blue) and B-spline nonparametric models m →
∞ (Green).
The dotted region is the discrepancy between the sufficient and necessary
conditions.

Simulated coverage probabilities of confidence interval based on β(τ)
We generate data from Yi = 0.21 + β>m−1Xi + εi, for m = 4, 16, 32. Xi ∼ U([0, 1]m−1) with covariance matrix
ΣX := E[XiX

>
i ], Σjk = 0.120.7|j−k| for j, k = 1, ...,m − 1. The error ε ∼ N or ε ∼ EXP (skewed). x0 =

(1, (m− 1)−1/2l>m−1)>. The 95% coverage probability of the confidence interval from (3) using β(τ):

P
{
x>0 β(τ) ∈

[
x>0 β(τ)±N−1/2f−1ε,τ

√
τ(1− τ)x>0 Σ−1X x0Φ−1(0.975)

]}
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Figure 3: Phase transition:
coverage probability drop to
0 after certain threshold S∗.
When model dimensionm in-
creases, S∗ decreases. As N
increases, S∗ gets closer to
N1/2 (cf. blue region in Fig-
ure 2). In the normal case, the
coverage is symmetric in τ .

Simulated coverage probabilities of confidence interval based on F̂Y |X(y|x)
Same setting for (Xi, Yi) as above. Take B: cubic B-spline with q = dim(B) defined on G = 4 + q equidistant
knots on [τL, τU ]. We require K > q so that β̂(τ) is computable. N = 214. y0 = Q(x0; τ) so that FY |X(y0|x0) = τ .
The 95% coverage probability of the confidence interval from (5) using F̂Y |X(y|x) is

P
{
τ ∈

[
F̂Y |X(Q(x0; τ)|x0)±N−1/2

√
τ(1− τ)x>0 Σ−1X x0Φ−1(0.975)

]}
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Figure 4: Phase transition:
coverage probability drop to
0 after either thresholds S∗ or
q∗. Increase in model dimen-
sionm lowers both S∗ and q∗.
Increase in q and K improves
the coverage probability. Pro-
jection induces additional er-
ror causing the normal case
asymmetric in τ .


