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Sequence of random variables

Statistical applications often involve data, {Xi, X2, ..., Xp}
independent and identically distributed, i.e. they are independent
and having the same cdf (and pdf)

» Body heights of high school students
» Housing prices

» Annual income
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Random sample

Definition (See Section 4.6 for details)

If random variables X1, X5, ..., X,, are independent and identically
distributed (i.i.d.), then {X1, Xa, ..., Xn} is called a random sample
of size n
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» To make sense of data, the first step is to compute the sample

average
_ 1<
Xo =~ Z X;.
i=1
Is it a good estimate of the mean of X7

» For a moment, let's consider a general sequence of r.v.’s
Y1, Ys,...Y,, and introduce some useful notions. Later, we will
specialize the discussion on Y,, = X,
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Converge in distribution

Definition (Definition 7.2.1)
Gn(y) = P(Yn < y) converges to G(y) in distribution if

lim G,(y) = G(y),

n—oo
for all values y at which G(y) is continuous, denoted by

Y, %y

The distribution corresponding to the CDF G(y) is called the
limiting distribution of Y.
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Smallest order statistics (Section 6.5)
An ideal situation: cdf F(x) of X; is known (all have same cdf).

Xi:n = min{ Xy, Xa, ..., Xp} : the smallest order statistics
The CDF of Xi.p, is

P(X1:n < x)
=1—P(X1:n > x)
=1-P({X1>x}n{Xo>x}Nn...Nn{X, > x})

[if the smallest of X;'s is > x, every single X; > x]
=1—P(X1 > x)P(X2 > x)...P(X, > x) [all X; independent]
=1—(1-F(x))".

Hence, the CDF of Xj., is
1—(1-F(x))"
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Largest order statistics (Section 6.5)

Xn:n = max{ X1, Xa, ..., Xp} : the largest order statistics
The CDF of X,,.,, is

P(Xn:n < x)
=P({X <x}n{Xo <x}n..n{X, <x})
[if the largest of X;'s is < x, every single X; < x]
= P(X1 < x)P(X2 < x)...P(Xp < x)
= F(x)".

Hence, the CDF of X,., is
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Example of convergence in distribution
F(x) =1— (14 x)~! the Pareto(1,1) distribution.
Y% = n)(tn =n *rnin{)(l,)<2,.“,)(n}.
If y <0, P(Yn, < y)=0 (why?). If y >0,

P(Y,<y)= P(min{Xl,Xg,...,Xn} < %)
=1—(1—=F(y/nm)"

:1—(1+¥)_"
n

Calculus:
y\N—" _
<1+*) —~e Y, asn— oo
n
Hence, as n — >

P(Ys <y)— the cdf of Exp(1),

50, Y 5 Exp(1) as n — oo
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Convergence in probability

Another notion of convergence is stronger than the convergence in
distribution.

Definition (Definition 7.7.1)

Infinite sequence Y1, Ya, ... is said to converge in probability to a
random variable Y, if

lim P(|Y,—Y|>¢€)=0

n—o0

Denote by Y, Ry

» Sometimes the limit Y can be a fixed constant c instead of a
random variable
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P . d
— is stronger than —

Theorem (Theorem 7.7.1)

IFY, 5 Y, then Y, %Y (1)

In general, the converse of (1) is false. The converse of (1) is only

. . . d P
true when Y = c is a fixed constant, i.e. if Y, — c then Y, — c.
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Example of converging in probability

X1, Xo,...X, are independent and identically distributed. Suppose
X;'s share the same mean p and variance 0. However, they are
unknown to us. The distribution of X; is also unknown. Let

_ 1<
Y,=X, = . ;X; sample average
=

Distribution of Y, is unknown, because we do not know the
distribution of X;'s

1 ¢ 1o
E[Y] =D EX]=—> pn=p
i=1 i=1
1 < 1, o
1= 1=
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Example of converging in probability
2
Recall that E[X,] = 1 and Var [X,] = "7 for any € > 0,

PR — s > ) = P(rxn > s M‘n))
Lvar(Xo)

viewed as "k"
1

<5 (Sect. 2.4)]

-

Q
N

S
a
N

Hence, by squeezing,

2
. V . g
0.2 Jim P4l > 9 < Jim 75 =0
SO

lim P(|X, —pu| >¢) =0 thatis, X, 5 1

n—o00
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Amazing things about the deduction above

» This is the (weak) law of large number (WLLN) (Theorem
7.6.2):

_ 1 p
Xn:nZ;X,-—>,u, as n — oo
i

» in words, sample average is close to . when huge data size n is
available, so using X,, to estimate mean ;. makes perfect sense!
» This holds even when the distribution of X is unknown to us

» Alternative view with normal distribution: see example 7.2.7
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Estimation error

_ 1 < ]
» Ok, now we know X, = — ZX,- is close to p when "huge"
n
i=1
data size n is available

» But, say, | only have n = 50, this does not seem too large

Can we quantify the difference between X, and x for small n?
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2
. . S g

A solution is to use the square root of Var [X,] = — to measure
n

‘)?,, — u‘ < qy/ Var [)_(,,] = q\% (2)

with high probability if the constant g > 0 is large.

the error, e.g.

How large should g be?

» The answer depends on how much confidence one wants for
(2) to be true

» Exact distribution of X, is unknown since the distribution of
X;'s are unknown
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Central limit theorem (CLT)

Theorem (Theorem 7.3.1)
If{X1, X2, ..., Xn} are i.i.d. with mean E[X] = u and
Var [X] = 02 < oo, then

Xo =t g

Z=

~ N(0,1), as n — co. (3)

» Although n — oo in (3), Z usually approximates the
distribution of Z, well when n is mildly large, e.g. n = 30, and
approximation is best when the distribution of X is symmetric

» The variance condition excludes Pareto distribution with
Kk < 2, so CLT does not hold for all distributions
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Sketch of the proof of CLT

» Moment generating function of Z, is (after Taylor expansion
and some calculations)
t2 d(n))"

Mz () = (L4 3, + =0

where lim d(n) — 0 is the remainder term
n—o00
» By calculus, as n — oo,

t2

d(n)\n 2
3 n) eT = Male)

Mz, (t) = (1 +

where Mz(t) = E[e'?] is the moment generating function of

Z ~N(0,1)
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Now, using CLT to find a reasonable g in (2).

Divide both sides of (2) by %
X, —

4 7~ N(O, 1) by CLT
so, we find g that satisfies
IZ|<q or —g<Z<gq

with high probability 1 — « (or small « > 0)
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1—a¥@pqg<z<q)

P(Z <q)— P(Z < —q)
P(Z <q)-(1-P(Z<q))

symmetry of Z: P(Z > —q) = P(Z < q)
=2P(Z<q)—1

So, g should satisfy

«
P(Z<q):1—§ or q=2z_2

y 0.90 0.95 0.975 0.99 0.995 0.999

z 1.282 1.645 1.960 2.326 2576 3.090

Y

Figure: The z, such that P(Z < z,) =~ (bottom of Table 3).
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Confidence interval
Plugging g = 712 in (2), we have

‘)_(,, — u‘ < zy_g0* 7 with confidence 1 — a

Vn

Breaking the absolute value yields the confidence interval for p:

RS [)_(,, +2z1 0% i} with confidence 1 — « (5)

Jn

Say, a = 10%, v =1 — /2 = 0.95, and z, = 1.645. Suppose our
data have size n = 50 with o = 2

1 € [Xn —0.4653, X, + 0.4653]

with probability 90%.
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pe [ Xo+ Zi_q)2 % i} with confidence 1 — «

Vvn
The confidence interval is wider when

» confidence is high (o small and v =1 — «/2 high)

¥y 0.90 0.95 0.975 0.99 0.995 0.999

z 1.282 1.645 1.960 2326 2576 3.090

Y

» 02 = Var (X) is large (more uncertainty in the data)
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A caveat: o is typically not known to practitioners, so one has to
guess a o before using (5)

We can deal with it by finding an estimator 2 of o2 that depends
on the data {Xi, Xz, ..., X,;} such that

~2 P 2
0 —=0°, asn— o

This can be achieved by setting

which is the sample variance
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To determine g, can we have a modification of the CLT (3) such
that

X, —
3/\/§$ZNN(O’1)’ as n — o0? (6)

The answer is YES!
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Slutsky’'s Theorem

Theorem (Theorem 7.7.4)

If W,,£>c and V,,i> V, then
L Wyt V,SctV

2. W,V, % cv

3. Vo /W, S Ve, ifc#0

(6) is warranted by 2. of Slutsky's theorem by viewing

)_<n_ ,U/M
ING MJ/\/%Z ~ N(0,1),

N
= =W,

- n

and V,,iZand W,,£>1
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Confidence interval with unknown o

The confidence interval holds with probability 1 — «:

~

o=l S 202% (8)

where z;_, /> is determined as before

» This approach may require n to be larger than that needed for
the case of known o

» |n practice, n may be small. A more refined confidence interval
of using t distribution for g will be covered in the continuation
of this course
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Appendix: Chebychev’s inequality

Theorem (Theorem 2.4.7)

If X is a random variable with mean p and variance o, then for
any k >0,

P(IX — il > ko) = P(IX — | > ky/Var (X)) < 15

» Back to convergence in probability
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