Selected Topics of Chapter 7: Limiting Distributions (and some Section 6.5)

Shih-Kang Chao
Department of Statistics
University of Missouri-Columbia

2019 Spring

Sequence of random variables

Statistical applications often involve data, $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ independent and identically distributed, i.e. they are independent and having the same cdf (and pdf)

- Body heights of high school students
- Housing prices
- Annual income

Random sample

Definition (See Section 4.6 for details)

If random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed (i.i.d.), then $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is called a random sample of size n

- To make sense of data, the first step is to compute the sample average

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Is it a good estimate of the mean of X ?

- For a moment, let's consider a general sequence of r.v.'s $Y_{1}, Y_{2}, \ldots Y_{n}$, and introduce some useful notions. Later, we will specialize the discussion on $Y_{n}=\bar{X}_{n}$

Converge in distribution

Definition (Definition 7.2.1)
$G_{n}(y)=P\left(Y_{n} \leq y\right)$ converges to $G(y)$ in distribution if

$$
\lim _{n \rightarrow \infty} G_{n}(y)=G(y),
$$

for all values y at which $G(y)$ is continuous, denoted by

$$
Y_{n} \xrightarrow{d} Y
$$

The distribution corresponding to the $\operatorname{CDF} G(y)$ is called the limiting distribution of Y_{n}.

Smallest order statistics (Section 6.5)

An ideal situation: $\operatorname{cdf} F(x)$ of X_{i} is known (all have same cdf).

$$
X_{1: n}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}: \text { the smallest order statistics }
$$

The CDF of $X_{1: n}$ is

$$
\begin{aligned}
& P\left(X_{1: n} \leq x\right) \\
& =1-P\left(X_{1: n}>x\right) \\
& =1-P\left(\left\{X_{1}>x\right\} \cap\left\{X_{2}>x\right\} \cap \ldots \cap\left\{X_{n}>x\right\}\right) \\
& \left.\quad \quad \quad \quad \text { if the smallest of } X_{i} \text { 's is }>x \text {, every single } X_{i}>x\right] \\
& =1-P\left(X_{1}>x\right) P\left(X_{2}>x\right) \ldots P\left(X_{n}>x\right) \quad\left[\text { all } X_{i} \text { independent }\right] \\
& =1-(1-F(x))^{n} .
\end{aligned}
$$

Hence, the CDF of $X_{1: n}$ is

$$
1-(1-F(x))^{n}
$$

Largest order statistics (Section 6.5)

$$
X_{n: n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}: \text { the largest order statistics }
$$

The CDF of $X_{n: n}$ is

$$
\begin{aligned}
& P\left(X_{n: n} \leq x\right) \\
& =P\left(\left\{X_{1} \leq x\right\} \cap\left\{X_{2} \leq x\right\} \cap \ldots \cap\left\{X_{n} \leq x\right\}\right) \\
& \left.\quad \quad \quad \text { if the largest of } X_{i}^{\prime} \text { 's is } \leq x, \text { every single } X_{i} \leq x\right] \\
& =P\left(X_{1} \leq x\right) P\left(X_{2} \leq x\right) \ldots P\left(X_{n} \leq x\right) \\
& =F(x)^{n} .
\end{aligned}
$$

Hence, the CDF of $X_{n: n}$ is

$$
F(x)^{n}
$$

Example of convergence in distribution

$F(x)=1-(1+x)^{-1}$ the $\operatorname{Pareto}(1,1)$ distribution.
$Y_{n}=n X_{1: n}=n * \min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
If $y \leq 0, P\left(Y_{n} \leq y\right)=0$ (why?). If $y>0$,

$$
\begin{aligned}
P\left(Y_{n} \leq y\right) & =P\left(\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \leq \frac{y}{n}\right) \\
& =1-(1-F(y / n))^{n} \\
& =1-\left(1+\frac{y}{n}\right)^{-n}
\end{aligned}
$$

Calculus:

$$
\left(1+\frac{y}{n}\right)^{-n} \rightarrow e^{-y}, \quad \text { as } n \rightarrow \infty
$$

Hence, as $n \rightarrow \infty$

$$
P\left(Y_{n} \leq y\right) \rightarrow \text { the cdf of } \operatorname{Exp}(1)
$$

so, $Y_{n} \xrightarrow{d} \operatorname{Exp}(1)$ as $n \rightarrow \infty$

Convergence in probability

Another notion of convergence is stronger than the convergence in distribution.

Definition (Definition 7.7.1)

Infinite sequence Y_{1}, Y_{2}, \ldots is said to converge in probability to a random variable Y, if

$$
\lim _{n \rightarrow \infty} P\left(\left|Y_{n}-Y\right|>\epsilon\right)=0
$$

Denote by $Y_{n} \xrightarrow{P} Y$

- Sometimes the limit Y can be a fixed constant c instead of a random variable

\xrightarrow{P} is stronger than \xrightarrow{d}

Theorem (Theorem 7.7.1)

$$
\begin{equation*}
\text { If } Y_{n} \xrightarrow{P} Y \text {, then } Y_{n} \xrightarrow{d} Y \tag{1}
\end{equation*}
$$

In general, the converse of (1) is false. The converse of (1) is only true when $Y=c$ is a fixed constant, i.e. if $Y_{n} \xrightarrow{d} c$ then $Y_{n} \xrightarrow{P} c$.

Example of converging in probability

$X_{1}, X_{2}, \ldots X_{n}$ are independent and identically distributed. Suppose X_{i} 's share the same mean μ and variance σ^{2}. However, they are unknown to us. The distribution of X_{i} is also unknown. Let

$$
Y_{n}=\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { sample average }
$$

Distribution of Y_{n} is unknown, because we do not know the distribution of X_{i} 's

$$
\begin{aligned}
\mathbb{E}\left[Y_{n}\right] & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mu=\mu \\
\operatorname{Var}\left[Y_{n}\right] & =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Example of converging in probability

Recall that $\mathbb{E}\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{Var}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n}$, for any $\epsilon>0$,

$$
\begin{aligned}
P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) & =P(\left|\bar{X}_{n}-\mu\right|>\underbrace{}_{\underbrace{}_{\text {viewed as " } k \text { " }} \frac{\epsilon}{\sqrt{\operatorname{Var}\left(\bar{X}_{n}\right)}} \sqrt{\operatorname{Var}\left(\bar{X}_{n}\right)})} \\
& \leq \frac{1}{k^{2}} \quad[\text { Chebychev's inequality (Sect. 2.4)] } \\
& =\frac{\sigma^{2}}{n \epsilon^{2}} .
\end{aligned}
$$

Hence, by squeezing,

$$
0 \leq \lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n \epsilon^{2}}=0
$$

so

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0 \quad \text { that is, } \bar{X}_{n} \xrightarrow{P} \mu
$$

Amazing things about the deduction above

- This is the (weak) law of large number (WLLN) (Theorem 7.6.2):

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mu, \quad \text { as } n \rightarrow \infty
$$

- in words, sample average is close to μ when huge data size n is available, so using \bar{X}_{n} to estimate mean μ makes perfect sense!
- This holds even when the distribution of X is unknown to us
- Alternative view with normal distribution: see example 7.2.7

Estimation error

- Ok, now we know $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is close to μ when "huge" data size n is available
- But, say, I only have $n=50$, this does not seem too large

Can we quantify the difference between \bar{X}_{n} and μ for small n ?

A solution is to use the square root of $\operatorname{Var}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n}$ to measure the error, e.g.

$$
\begin{equation*}
\left|\bar{X}_{n}-\mu\right| \leq q \sqrt{\operatorname{Var}\left[\bar{X}_{n}\right]}=q \frac{\sigma}{\sqrt{n}} \tag{2}
\end{equation*}
$$

with high probability if the constant $q>0$ is large.

How large should q be?

- The answer depends on how much confidence one wants for (2) to be true
- Exact distribution of \bar{X}_{n} is unknown since the distribution of X_{i} 's are unknown

Central limit theorem (CLT)

Theorem (Theorem 7.3.1)

If $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are i.i.d. with mean $\mathbb{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}<\infty$, then

$$
\begin{equation*}
Z_{n}:=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{d} Z \sim \mathcal{N}(0,1) \text {, as } n \rightarrow \infty \text {. } \tag{3}
\end{equation*}
$$

- Although $n \rightarrow \infty$ in (3), Z usually approximates the distribution of Z_{n} well when n is mildly large, e.g. $n=30$, and approximation is best when the distribution of X is symmetric
- The variance condition excludes Pareto distribution with $\kappa \leq 2$, so CLT does not hold for all distributions

Sketch of the proof of CLT

- Moment generating function of Z_{n} is (after Taylor expansion and some calculations)

$$
M_{Z_{n}}(t)=\left(1+\frac{t^{2}}{2 n}+\frac{d(n)}{n}\right)^{n}
$$

where $\lim _{n \rightarrow \infty} d(n) \rightarrow 0$ is the remainder term

- By calculus, as $n \rightarrow \infty$,

$$
M_{Z_{n}}(t)=\left(1+\frac{t^{2}}{2 n}+\frac{d(n)}{n}\right)^{n} \rightarrow e^{\frac{t^{2}}{2}}=M_{Z}(t)
$$

where $M_{Z}(t)=E\left[e^{t Z}\right]$ is the moment generating function of $Z \sim \mathcal{N}(0,1)$

Now, using CLT to find a reasonable q in (2).
Divide both sides of (2) by $\frac{\sigma}{\sqrt{n}}$:

$$
|\underbrace{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}}_{\xrightarrow[\rightarrow]{d} Z \sim \mathcal{N}(0,1) \text { by CLT }}| \leq q
$$

so, we find q that satisfies

$$
\begin{equation*}
|Z| \leq q \quad \text { or } \quad-q<Z<q \tag{4}
\end{equation*}
$$

with high probability $1-\alpha$ (or small $\alpha>0$)

$$
\begin{aligned}
1-\alpha & \stackrel{(4)}{=} P(-q<Z<q) \\
& =P(Z<q)-P(Z<-q) \\
& =P(Z<q)-(1-P(Z<q)) \\
& \quad \text { symmetry of } Z: P(Z>-q)=P(Z<q) \\
& =2 P(Z<q)-1
\end{aligned}
$$

So, q should satisfy

$$
P(Z<q)=1-\frac{\alpha}{2} \quad \text { or } \quad q=z_{1-\frac{\alpha}{2}}
$$

γ	0.90	0.95	0.975	0.99	0.995	0.999
z_{γ}	1.282	1.645	1.960	2.326	2.576	3.090

Figure: The z_{γ} such that $P\left(Z<z_{\gamma}\right)=\gamma$ (bottom of Table 3).

Confidence interval

Plugging $q=z_{1-\frac{\alpha}{2}}$ in (2), we have

$$
\left|\bar{X}_{n}-\mu\right| \leq z_{1-\alpha / 2} * \frac{\sigma}{\sqrt{n}} \text { with confidence } 1-\alpha
$$

Breaking the absolute value yields the confidence interval for μ :

$$
\begin{equation*}
\mu \in\left[\bar{X}_{n} \pm z_{1-\alpha / 2} * \frac{\sigma}{\sqrt{n}}\right] \text { with confidence } 1-\alpha \tag{5}
\end{equation*}
$$

Say, $\alpha=10 \%, \gamma=1-\alpha / 2=0.95$, and $z_{\gamma}=1.645$. Suppose our data have size $n=50$ with $\sigma=2$

$$
\mu \in\left[\bar{X}_{n}-0.4653, \bar{X}_{n}+0.4653\right]
$$

with probability 90%.

$$
\mu \in\left[\bar{X}_{n} \pm z_{1-\alpha / 2} * \frac{\sigma}{\sqrt{n}}\right] \text { with confidence } 1-\alpha
$$

The confidence interval is wider when

- confidence is high (α small and $\gamma=1-\alpha / 2$ high)

| γ | 0.90 | 0.95 | 0.975 | 0.99 | 0.995 | 0.999 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| z_{γ} | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 |

- $\sigma^{2}=\operatorname{Var}(X)$ is large (more uncertainty in the data)

A caveat: σ is typically not known to practitioners, so one has to guess a σ before using (5)

We can deal with it by finding an estimator $\widehat{\sigma}^{2}$ of σ^{2} that depends on the data $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ such that

$$
\widehat{\sigma}^{2} \xrightarrow{P} \sigma^{2}, \quad \text { as } n \rightarrow \infty
$$

This can be achieved by setting

$$
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

which is the sample variance

To determine q, can we have a modification of the CLT (3) such that

$$
\begin{equation*}
\frac{\bar{X}_{n}-\mu}{\widehat{\sigma} / \sqrt{n}} \xrightarrow{d} Z \sim \mathcal{N}(0,1), \text { as } n \rightarrow \infty ? \tag{6}
\end{equation*}
$$

The answer is YES!

Slutsky's Theorem

Theorem (Theorem 7.7.4)

If $W_{n} \xrightarrow{P} c$ and $V_{n} \xrightarrow{d} V$, then

1. $W_{n}+V_{n} \xrightarrow{d} c+V$
2. $W_{n} V_{n} \xrightarrow{d} c V$
3. $V_{n} / W_{n} \xrightarrow{d} V / c$, if $c \neq 0$
(6) is warranted by 2 . of Slutsky's theorem by viewing

$$
\begin{equation*}
\frac{\bar{X}_{n}-\mu}{\hat{\sigma} / \sqrt{n}}=\underbrace{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}}_{=V_{n}} \underbrace{\frac{\sigma / \sqrt{n}}{\hat{\sigma} / \sqrt{n}}}_{=W_{n}} \xrightarrow{d} Z \sim \mathcal{N}(0,1), \tag{7}
\end{equation*}
$$

and $V_{n} \xrightarrow{d} Z$ and $W_{n} \xrightarrow{P} 1$

Confidence interval with unknown σ

The confidence interval holds with probability $1-\alpha$:

$$
\begin{equation*}
\left|\bar{X}_{n}-\mu\right| \leq z_{1-\alpha / 2} * \frac{\widehat{\sigma}}{\sqrt{n}} \tag{8}
\end{equation*}
$$

where $z_{1-\alpha / 2}$ is determined as before

- This approach may require n to be larger than that needed for the case of known σ
- In practice, n may be small. A more refined confidence interval of using t distribution for q will be covered in the continuation of this course

Appendix: Chebychev's inequality

Theorem (Theorem 2.4.7)
If X is a random variable with mean μ and variance σ^{2}, then for any $k>0$,

$$
P(|X-\mu|>k \sigma)=P(|X-\mu|>k \sqrt{\operatorname{Var}(X)}) \leq \frac{1}{k^{2}}
$$

