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Sequence of random variables

Statistical applications often involve data, {X1,X2, ...,Xn}
independent and identically distributed, i.e. they are independent
and having the same cdf (and pdf)

I Body heights of high school students
I Housing prices
I Annual income
...
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Random sample

Definition (See Section 4.6 for details)
If random variables X1,X2, ...,Xn are independent and identically
distributed (i.i.d.), then {X1,X2, ...,Xn} is called a random sample
of size n
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I To make sense of data, the first step is to compute the sample
average

X̄n =
1
n

n∑
i=1

Xi .

Is it a good estimate of the mean of X?

I For a moment, let’s consider a general sequence of r.v.’s
Y1,Y2, ...Yn, and introduce some useful notions. Later, we will
specialize the discussion on Yn = X̄n
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Converge in distribution

Definition (Definition 7.2.1)
Gn(y) = P(Yn ≤ y) converges to G (y) in distribution if

lim
n→∞

Gn(y) = G (y),

for all values y at which G (y) is continuous, denoted by

Yn
d→ Y

The distribution corresponding to the CDF G (y) is called the
limiting distribution of Yn.
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Smallest order statistics (Section 6.5)
An ideal situation: cdf F (x) of Xi is known (all have same cdf).

X1:n = min{X1,X2, ...,Xn} : the smallest order statistics

The CDF of X1:n is

P(X1:n ≤ x)

= 1− P(X1:n > x)

= 1− P
(
{X1 > x} ∩ {X2 > x} ∩ ... ∩ {Xn > x}

)
[if the smallest of Xi ’s is > x , every single Xi > x ]

= 1− P(X1 > x)P(X2 > x)...P(Xn > x) [all Xi independent]
= 1− (1− F (x))n.

Hence, the CDF of X1:n is

1− (1− F (x))n
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Largest order statistics (Section 6.5)

Xn:n = max{X1,X2, ...,Xn} : the largest order statistics

The CDF of Xn:n is

P(Xn:n ≤ x)

= P
(
{X1 ≤ x} ∩ {X2 ≤ x} ∩ ... ∩ {Xn ≤ x}

)
[if the largest of Xi ’s is ≤ x , every single Xi ≤ x ]

= P(X1 ≤ x)P(X2 ≤ x)...P(Xn ≤ x)

= F (x)n.

Hence, the CDF of Xn:n is

F (x)n
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Example of convergence in distribution
F (x) = 1− (1 + x)−1 the Pareto(1,1) distribution.
Yn = nX1:n = n ∗min{X1,X2, ...,Xn}.
If y ≤ 0, P(Yn ≤ y) = 0 (why?). If y > 0,

P(Yn ≤ y) = P
(
min{X1,X2, ...,Xn} ≤

y

n

)
= 1− (1− F (y/n))n

= 1−
(
1 +

y

n

)−n
Calculus: (

1 +
y

n

)−n
→ e−y , as n→∞

Hence, as n→∞

P(Yn ≤ y)→ the cdf of Exp(1),

so, Yn
d→ Exp(1) as n→∞
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Convergence in probability

Another notion of convergence is stronger than the convergence in
distribution.

Definition (Definition 7.7.1)
Infinite sequence Y1,Y2, ... is said to converge in probability to a
random variable Y , if

lim
n→∞

P(|Yn − Y | > ε) = 0

Denote by Yn
P→ Y

I Sometimes the limit Y can be a fixed constant c instead of a
random variable
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P→ is stronger than d→

Theorem (Theorem 7.7.1)

If Yn
P→ Y , then Yn

d→ Y (1)

In general, the converse of (1) is false. The converse of (1) is only
true when Y = c is a fixed constant, i.e. if Yn

d→ c then Yn
P→ c .
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Example of converging in probability
X1,X2, ...Xn are independent and identically distributed. Suppose
Xi ’s share the same mean µ and variance σ2. However, they are
unknown to us. The distribution of Xi is also unknown. Let

Yn = X̄n :=
1
n

n∑
i=1

Xi sample average

Distribution of Yn is unknown, because we do not know the
distribution of Xi ’s

E[Yn] =
1
n

n∑
i=1

E[Xi ] =
1
n

n∑
i=1

µ = µ

Var [Yn] =
1
n2

n∑
i=1

Var [Xi ] =
1
n2

n∑
i=1

σ2 =
σ2

n
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Example of converging in probability
Recall that E[X̄n] = µ and Var [X̄n] =

σ2

n
, for any ε > 0,

P(|X̄n − µ| > ε) = P

(
|X̄n − µ| >

ε

������√
Var (X̄n)︸ ︷︷ ︸

viewed as "k"

������
√

Var (X̄n)

)

≤ 1
k2 [ Chebychev’s inequality (Sect. 2.4)]

=
σ2

nε2
.

Hence, by squeezing,

0 ≤ lim
n→∞

P(|X̄n − µ| > ε) ≤ lim
n→∞

σ2

nε2
= 0,

so

lim
n→∞

P(|X̄n − µ| > ε) = 0 that is, X̄n
P→ µ
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Amazing things about the deduction above

I This is the (weak) law of large number (WLLN) (Theorem
7.6.2):

X̄n =
1
n

n∑
i=1

Xi
P→ µ, as n→∞

I in words, sample average is close to µ when huge data size n is
available, so using X̄n to estimate mean µ makes perfect sense!

I This holds even when the distribution of X is unknown to us

I Alternative view with normal distribution: see example 7.2.7
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Estimation error

I Ok, now we know X̄n =
1
n

n∑
i=1

Xi is close to µ when "huge"

data size n is available
I But, say, I only have n = 50, this does not seem too large

Can we quantify the difference between X̄n and µ for small n?
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A solution is to use the square root of Var [X̄n] =
σ2

n
to measure

the error, e.g. ∣∣X̄n − µ
∣∣ ≤ q

√
Var [X̄n] = q

σ√
n

(2)

with high probability if the constant q > 0 is large.

How large should q be?

I The answer depends on how much confidence one wants for
(2) to be true

I Exact distribution of X̄n is unknown since the distribution of
Xi ’s are unknown
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Central limit theorem (CLT)

Theorem (Theorem 7.3.1)
If {X1,X2, ...,Xn} are i.i.d. with mean E[X ] = µ and
Var [X ] = σ2 <∞, then

Zn :=
X̄n − µ
σ/
√
n

d→ Z ∼ N (0, 1), as n→∞. (3)

I Although n→∞ in (3), Z usually approximates the
distribution of Zn well when n is mildly large, e.g. n = 30, and
approximation is best when the distribution of X is symmetric

I The variance condition excludes Pareto distribution with
κ ≤ 2, so CLT does not hold for all distributions
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Sketch of the proof of CLT

I Moment generating function of Zn is (after Taylor expansion
and some calculations)

MZn(t) =
(
1 +

t2

2n
+

d(n)

n

)n
where lim

n→∞
d(n)→ 0 is the remainder term

I By calculus, as n→∞,

MZn(t) =
(
1 +

t2

2n
+

d(n)

n

)n
→ e

t2
2 = MZ (t),

where MZ (t) = E [etZ ] is the moment generating function of
Z ∼ N (0, 1)
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Now, using CLT to find a reasonable q in (2).

Divide both sides of (2) by
σ√
n
:

∣∣∣∣ X̄n − µ
σ/
√
n︸ ︷︷ ︸

d→ Z ∼ N (0, 1) by CLT

∣∣∣∣ ≤ q

so, we find q that satisfies

|Z | ≤ q or − q < Z < q (4)

with high probability 1− α (or small α > 0)
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1− α (4)
= P(−q < Z < q)

= P(Z < q)− P(Z < −q)

= P(Z < q)− (1− P(Z < q))

symmetry of Z : P(Z > −q) = P(Z < q)

= 2P(Z < q)− 1

So, q should satisfy

P(Z < q) = 1− α

2
or q = z1−α

2

Figure: The zγ such that P(Z < zγ) = γ (bottom of Table 3).
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Confidence interval

Plugging q = z1−α
2
in (2), we have∣∣X̄n − µ

∣∣ ≤ z1−α/2 ∗
σ√
n
with confidence 1− α

Breaking the absolute value yields the confidence interval for µ:

µ ∈
[
X̄n ± z1−α/2 ∗

σ√
n

]
with confidence 1− α (5)

Say, α = 10%, γ = 1− α/2 = 0.95, and zγ = 1.645. Suppose our
data have size n = 50 with σ = 2

µ ∈
[
X̄n − 0.4653, X̄n + 0.4653

]
with probability 90%.

20 / 26



µ ∈
[
X̄n ± z1−α/2 ∗

σ√
n

]
with confidence 1− α

The confidence interval is wider when
I confidence is high (α small and γ = 1− α/2 high)

I σ2 = Var (X ) is large (more uncertainty in the data)
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A caveat: σ is typically not known to practitioners, so one has to
guess a σ before using (5)

We can deal with it by finding an estimator σ̂2 of σ2 that depends
on the data {X1,X2, ...,Xn} such that

σ̂2 P→ σ2, as n→∞

This can be achieved by setting

σ̂2 =
1
n

n∑
i=1

(Xi − X̄n)2

which is the sample variance
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To determine q, can we have a modification of the CLT (3) such
that

X̄n − µ
σ̂/
√
n

d→ Z ∼ N (0, 1), as n→∞? (6)

The answer is YES!
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Slutsky’s Theorem

Theorem (Theorem 7.7.4)

If Wn
P→ c and Vn

d→ V , then

1. Wn + Vn
d→ c + V

2. WnVn
d→ cV

3. Vn/Wn
d→ V /c , if c 6= 0

(6) is warranted by 2. of Slutsky’s theorem by viewing

X̄n − µ
σ̂/
√
n

=
X̄n − µ

���σ/
√
n︸ ︷︷ ︸

= Vn

�
��σ/
√
n

σ̂/
√
n︸ ︷︷ ︸

= Wn

d→ Z ∼ N (0, 1), (7)

and Vn
d→ Z and Wn

P→ 1
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Confidence interval with unknown σ

The confidence interval holds with probability 1− α:∣∣X̄n − µ
∣∣ ≤ z1−α/2 ∗

σ̂√
n

(8)

where z1−α/2 is determined as before

I This approach may require n to be larger than that needed for
the case of known σ

I In practice, n may be small. A more refined confidence interval
of using t distribution for q will be covered in the continuation
of this course
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Appendix: Chebychev’s inequality

Theorem (Theorem 2.4.7)

If X is a random variable with mean µ and variance σ2, then for
any k > 0,

P
(
|X − µ| > kσ

)
= P

(
|X − µ| > k

√
Var (X )

)
≤ 1

k2

Back to convergence in probability
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